
An Effective Test Case Selection for Software
Testing Improvement

Adtha Lawanna
Department of Information Technology

Vincent Marry School of Science and Technology, Assumption University
Bangkok, Thailand

adtha@scitech.au.edu

Abstract— One problem of testing software is selecting the
suitable test cases from the test suit regarding the size of the
programs. If the size of selected test cases is big, then it can affect
the whole performance of software development life cycle.
Accordingly, it increases testing time and produce many bugs.
Therefore, this paper proposes the improvement of software
testing for selecting the appropriate and small number of test
cases by considering the amounts of the functions modified, lines
of code changed, and numbers of bugs produced after modifying
programs. The reason of proposing the software testing
improvement model is to prepare effective algorithm, while
numbers of bugs are lower than the traditional methods.
According to the experimental results, the size of the selected test
cases by using the proposed model is less than Retest All,
Random, and a Safe Test about 98.70%, 87.86%, and 84.67%
respectively. Moreover, the ability of STI is higher than the
comparative studies about 1-20 times regarding the number of
bugs found after modifying a program.

Keywords—software testing; test case; code; bugs

I. INTRODUCTION

Software engineering is applied for several fields such as
computer science, system dynamics, system science, and
management system [1]. The software development life cycle
is a methodology used in this field [2]. However, the major
problem of software testing, which is studied in this paper
refers to choosing the appropriate test cases, which contain
bugs, functions, and any errors [3]. The serious problem is the
size of the selected test cases is too big when modifying
program each version [4-5]. This causes the testing time and
errors increase. Therefore, this paper presents the model to
solve this problem. The retest all method, random technique
and a safe test are used for the comparisons. The studies show
that method of retesting all possible cases is simple but it
introduces time consuming during testing the software. While,
the random technique is easier than the previous method,
when testing some test cases selected from the whole program.
Unfortunately, that it cannot guarantee the accuracy of
auditing the software [6]. Another is a safe test technique,
which gives the better performance in term of reducing many
ineffective test cases, while few bugs are produced compared
with the old approaches [7-8]. To the survey, some traditional
test case selection techniques work effectively regarding the
complexity of codes, environments, and user requirements [9].

This paper studies three factors that can affect the test case
selection, which are functions, codes, and software versions.
The traditional methods mentioned earlier can be applied for
these environments. However, the size by chosen test cases
and numbers of bugs after using these techniques need the
improvement for better performance, especially in the process
of software testing. Therefore, the proposed model named,
Software Testing Improvement (STI) is developed for
improving the ability of choosing the test cases, while the
minimum test cases and bugs are reachable.

II. THE CONCEPT OF SELECTING THE TEST CASES

A. Dataset
The seven subject programs developed by the Siemen

Suite are used in this paper as shown in Table I.
The details of each program can be downloaded from

http://pleuma.cc.gatech.edu/aristotle/Tools/subjects.

TABLE I. THE SUBJECT PROGRAMS

Name F L V
replace 21 516 32

print_token 18 402 7
print_token2 19 483 10

schedule2 16 297 10
schedule 18 299 9
totinfo 7 346 23

tcas 9 138 41
Definitions;
F is the numbers of function.
L is the lines of code.
V is the numbers of version.

B. Traditional Methods
Retest-All Method: RA

This technique tests all test cases in a test suite before
writing the new code by considering functions that required by
both users and developers. It suits for the smallest size with
low complexities under certain changes. However, it is not
appropriate technique, where numbers of function and code
are large. This means testing needs long time and high cost of
the maintenance phase. Besides, integrating parts of testing is
a difficult task.

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Algorithm of RA explained as follows;

If test cases (t) are found then

Select all test cases

End

Accordingly, RA cannot give the small numbers of test
cases and produces many bugs after the testing. Therefore,
some researchers find the better algorithm for handling this
situation.

Random Technique: RD

To improve the performance of the previous methods, the
random technique is developed. It reduces testing time, where
all cases are tested. This approach can be applied to handle the
software that has a big size regarding the requirements and
lines of code [10]. The algorithm of RD is to select test cases
randomly from the test suite. According to this, it may choose
the irrelevant test cases instead of the relevant test cases. This
makes the improvement of the new software drops.

Algorithm of RD described as follows;

If test cases (t) are found then

Select some test cases randomly

End

Using RD algorithm can give two problems, which are
uncertain selection and ineffective software testing, especially
controlling program errors.

A Safe Test Technique:ST

This technique is proposed by Rothermel and Harrold, the
results by selecting the test cases are more accurate than RD
including the size of a test suite is smaller than the RA [11].
This technique determines the test cases that can produce
programming errors or bugs after modifying the program.
Therefore, it gives a good new version of software [12-13].
However, it may not focus some test cases that should be
chosen before the modification. This is because after
integrating all components, new faults are probably produced.
Currently, the new technique is developed by the improvement
of a safe test technique [14]. Accordingly, it is used in the part
of evaluation together with random technique and the
proposed model.

C. Description of the Proposed Model
Software testing improvement (STI) is proposed,

particularly in the process of developing and modifying the
new software version from the previous program. It is
developed by considering the changes of the requirements and
modified programs. First of all, the previous program will be
realized in terms of the functions that can be changed
regarding to the user requirements. Second is to find the lines
of code that will be modified from the old program. Third is to
determine the appropriate numbers of the test cases that will
be used for the next version. However, the set of test cases
will be tested. If it fails, then it needs to be revised by
checking F and L respectively, until it passes.

D. Concepts of the Model
The user requirement of each software can influence the

value of function. The average x-value will be determined by
using all of the old software versions. Accordingly, the
functions will be established. After this, the average b-value
will be computed regarding to the used of programmers, Lines
of code and testing time. The next step is to find the average c-
value for finding the appropriate test cases. However, the
selected test cases are dependent to human judgment (H).

E. Algorithm of the Proposed Model
The algorithm of STI is summarized in Fig. 1, which gives

four main steps.

Find the Functions Modified

Determine the Lines of Codes Changed

Find the appropriate numbers of the test cases

Select test cases

Fig. 1. Algorithm of STI

According to Fig. 1, the details are given as follows;
Step 1: Find the Functions Modified
Each program, there are many times of modifying the

software. For example, the numbers of modification of the
program named replace, print-token, print-token2, schedule2,
schedule, totinfo, tcase, space, and player are 32, 7, 10, 10, 9,
23, 41, 33, and 5 respectively. Relevant to these numbers of
versions (modification), the original numbers of functions in
each program result in the changes as well. So, this step is
created in order to find the average on the functions changed
for each version of the software.

Algorithm of x-value;
If RF ∝ then

xRF = or

R
Fx = (1)

End
Whereas;
F is number of function.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

R is user requirement.
x is constant value
Finding x is important in order for getting the constant

value, which is occurring regarding the relationship of F and
R. As we know that, if the software developers cannot control
the changes of user requirements. This may the value of the
modified functions performing inconsistency and unstable.

Step 2: Determine the Lines of Codes Changed

The code comprised with many lines of the instruction.
The code becomes complexity, when the environment changes
affect the whole software. They are relevant to testing times
and programmers. Accordingly, the relationship will be
defined to know the mentioned factors affect the capability of
the entire program. Algorithm of finding b-value;

If
T

L 1∝

then

T
sL 1=

 (2)

EsleIf
P

L 1∝ then

P
pL 1= (3)

ElseIf
PT

L 1∝ then

PT
bL
1= (4)

LPTb = (5)

EndIf
EndIf

End
Whereas;
T is testing time
P is number of programmer.
b, p, s are constant value.
This algorithm can give the possibility of the lines of codes

that will be changed because of adapting the previous code.

Step 3: Find the appropriate numbers of the test cases
The numbers of test cases are chosen for testing as the new

software. This is the most essential process for improving the
ability of testing the program. One of the objectives for the
proposed model is to select the minimum of the test cases in
order to control the size of the software. This means that if the
size is too big, then the whole software will be complicated
and hard to test each lies of codes, including time consuming
may cause another problem. Algorithm of finding c-value;

 If Ft ∝

then

qFt =

 (6)

EsleIf Lt ∝ then
mLt = (7)

ElseIf FLt ∝ then
cFLt = (8)

FL
tc = (9)

EndIf
EndIf

End
Whereas;
t is number of test case.
F is number of function.
L is line of codes.
q, m and c are constant value.

Step 4: The test case selection
Accordingly, the values of H (human judgments) need to

be identified regarding to the related people. Each test case
will be evaluated for the acceptance’s level, which are
described by the algorithm below;

Algorithm of test case selection
If H(tn) = max then

 Select tn // tn is test cast that has maximum of H.
ElseIf H(tm) = less than max then

 Select tm // tm is all ways less than tn.
ElseIf numbers of the selected test

 cases = t then
 Stop selection

EndIf
EndIf

End
Assume that if we want two appropriate test cases then the

value H-value will be provided. However, we can get the H-
value from user’s satisfaction, which is not explained in this
research regarding to the complicated methods. As shown in
Table II, t8 and t1 are selected regarding to using the selection
algorithm.

TABLE II. TEST CASES SELECTION

t H(t) Acceptance
1 84 2nd selection
2 34
3 5
4 54
5 41
6 12
7 32
8 91(max) 1st selection
9 15

10 33
11 0
12 5
13 22
14 41
15 27

In worst case, if the H-values are very low, all test cases

need to be revised again. In fact, the assumption of setting the
acceptance needs to be in consideration before the
modification. According to this, the acceptance of H-values
will be higher than 80%. This means that if its value is less
than the acceptance level will be rejected. Suppose that, if t is

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

equivalent to 5, then it is not appropriate to continue selecting
the rest three test cases. This is because the H-values of the
rest are lower than 80%. Therefore, the development team
must define the new appropriate test cases by using the
conceptual model proposed again.

Therefore, the whole algorithms by using STI may need the
feedback from selecting the appropriate test cases within the
development team and users.

However, the benefits of STI are satisfied, when handling
the complexities and changes of the modified functions and
fixing bugs are successful, which make the process of testing
program gets more effective.

III. RESULTS AND DICUSSION

A. Finding F and L
The results of finding R, x, and F for each program are

running relevant to numbers of versions as reported in Table
III-IX. Due to the proposed model, we can estimate F by using
the average x-value the next generation of the subject
program. According to this, the values of F of the subject
programs; replace, print-token, print-token2, schedule2,
schedule, totinfo, and tcas will be 9, 2, 4, 7, 6, 4, and 4
respectively. Besides, the results of finding L of the programs
are 244, 210, 266, 102, 109, 152, and 60 respectively.

B. Finding Test Case (t) by using STI
The results in Table X refer to the number of the selected

test cases for the seven subject programs. As described in this
table, the value of t in replace, print-token, print-token2,
schedule2, schedule, totinfo, and tcas are 27, 105, 67, 15, 18,
38, and 15 respectively. Therefore, in the next generation of
updating software for each program, we can use this set of
selected test cases to be modified and to run the modified
software.

C. Comparative Studies on Size of Program
The results in Table XI, the size of each program by using

four methods are shown. The results provide by the retest all
methods are higher than other technique. This method is the
easiest one that can be used to test the software. Time
consuming is the main problem, while a safe test and STI can
avoid it. However, this method will be a most powerful when
numbers of the cases are very small. Accordingly, the values
of test cases prepared by the STI are the lowest. This is
alternative technique for testing software overnight because
the sizes of the test cases have no effect to the whole
processes.

D. Comparative Studies on Bugs of Program
The outputs of this section are demonstrated in Table XII-

XIV and Fig. 2 shows the compared of numbers of bugs that
could be produced after modifying the new software regarding
using RA, RD, ST and STI. The algorithm of finding the bugs
is described as;

If tB ∝ then dtB = or

t
Bd = (10)

End
Whereas;
B is number of bug.
t is number of test case.
d is constant value.
The d-values are the average score of each faulty version

regarding to the seven subject program. According to this,
bugs found in the modified software version are considered.
Accordingly, the results of finding the numbers of the bugs for
each program by using RA are higher than the comparative
studies. This is because they are varied by the numbers of the
test cases, which are huge. On the other hand, using STI can
reduce numbers of the bugs. Therefore, one of the benefits of
considering STI is to avoid the bugs that can be occurred,
including avoiding time consuming of testing the test cases.

E. Discussion
There are some interested points that should be discussed

such determining the relationship between F and R. One of the
possible results may get negative value, which means finding
the relationship uses ineffective assumption, e.g., many R may
not affect F much as it should be. Besides, finding the line of
code changed may result the opposite from what we expect.

Moreover, another relationship of L and F can be found in
term of positivism, which refers to when F increases can make
L gets longer. However, this situation can be happed
depending upon the knowledge and skills of the developers.

Even improving the ability of testing software depends on
several factors, but the proposed model can work well, if R
and F are in control. However, the most important factor is H,
if it is ill defined, this can make the failure of selecting the
relevant test cases.

TABLE III. FINDING F AND LOF THE REPLACE, VERSION 33

V R x F b P T L
33 57 0.2 9 185450 16 49 244

TABLE IV. FINDING F AND L OF THE PRINT-TOKEN, VERSION 8

V R x F b P T L
8 73 0.06 2 171483 16 52 210

TABLE V. FINDING F AND L OF THE PRINT-TOKEN 2, VERSION 11

V R x F b P T L
11 91 0.11 4 220600 16 52 266

TABLE VI. FINDING F AND L OF THE SCHEDULE 2, VERSION 11

V R x F b P T L
11 66 0.15 7 87611 17 50 102

TABLE VII. FINDING F AND L OF THE SCHEDULE, VERSION 10

V R x F b P T L
10 63 0.13 6 97038 16 55 109

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

TABLE VIII. FINDING FAND L OF THE TOTINFO, VERSION 8

V R x F b P T L
8 57 0.08 4 107591 15 43 152

TABLE IX. FINDING F AND L OF THE TCAS, VERSION 10

V R x F b P T L
10 71 0.07 4 40707 15 41 60

TABLE X. FINDING TEST CASES

Name F L c t
replace 9 244 0.01 27

print_token 2 210 0.25 105
print_token2 4 266 0.06 67

schedule2 7 102 0.02 15
schedule 6 109 0.03 18
totinfo 4 152 0.06 38

tcas 4 60 0.06 15

TABLE XI. COMPARING SIZES

Name RA RD ST STI
replace 5,542 554 398 27

print_token 4,130 413 318 103
print_token2 4,115 412 389 67

schedule2 2,710 271 234 15
schedule 2,650 265 225 18
totinfo 1,052 214 199 38

tcas 1,608 203 83 15

TABLE XII. THE NUMBERS OF BUGS BY USING RA

Name B d t
replace 15 0.0027 5,542

print_token 18 0.0044 4,130
print_token2 20 0.0049 4,115

schedule2 17 0.0063 2,710
schedule 17 0.0064 2,650
totinfo 16 0.0152 1,052

tcas 18 0.0112 1,608

TABLE XIII. THE NUMBERS OF BUGS BY USING RD

Name B d t
replace 11 0.0199 554

print_token 13 0.0315 413
print_token2 13 0.0316 412

schedule2 13 0.0480 271
schedule 13 0.0491 265
totinfo 10 0.0467 214

tcas 13 0.0640 203

TABLE XIV. THE NUMBERS OF BUGS BY USING STI

Name B d t
replace 0 0.0000 27

print_token 1 0.0097 103
print_token2 0 0.0000 67

schedule2 0 0.0000 15
schedule 0 0.0000 18
totinfo 0 0.0000 38

tcas 0 0.0000 15

Fig. 2. Comparing number of bugs

IV. CONCLUSION
The software testing improvement (STI) is proposed for

increasing the ability of test case selection regarding to the
concept of regression test selection, which are RA, RD and ST
techniques. Besides this, it can be used for predicting the
numbers of functions modified and lines of code changed by
using four algorithms demonstrated in the paper. These
algorithms give three benefits listed as follows; the results of
predicting the functions modified and lines of code changed
for the new software version, the smallest numbers of the test
cases, including bugs that are produced after modifying
software are small when compared to the traditional methods.
However, the STI is applied for seven subject programs and
compared the performance with only three techniques.
Therefore, it may not cover other situations or some important
factors such as the limitation of testing software, knowledge
and skill of testers, and the environment by using software.

REFERENCES
[1] A. Abran, J.W. Moore, P. Bourque, R. Dupuis, and L.L. Tripp, “Guild to

the Software Engineering Body Knowledge,” IEEE, 2004.
[2] J. Feller and B. Fitzgerald, “A framework analysis of the open source

software development paradigm”, Proceedings of the twenty first
international conference on Information systems‘, International
Conference on Information Systems, Brisbane, Queens-land, Australia,
2002, pp. 58-69.

[3] A. Zoitl, T. Strasser and A. Valentini, “Open Source Initiatives asbasis
for the Establishment of new Technologies in Industrial Automation:
4DIAC a Case Study”, published in IEEE International Symposium of
Industrial Electronics (ISIE), 2010, pp. 3817-3819

[4] F.I. Vokolos, and P.G. Frankl, “Empirical evaluation of the textual
differencing regression testing technique,” Proceeding of the
International Conference on Software Maintenance, Shrewsbury, NJ,
USA., November 16-20, 1998, pp. 44-53.

[5] H. Agrawal, J. Horgan, E. Krauser, and S. London, “Incremental
regression testing,” Proceeding of the Conference on Software
Maintenance, Bellcore, Morristown, NJ, USA., September 27-30, 1993,
pp. 348-357.

[6] D.H. Kitson, “A Tailoring of the CMM for the Trusted Software
Domain,” Proceedings of the Seventh Annual Software Technology
Conference. Salt Lake City, Utah, 1995, April 9–14.

[7] M.Dorigo, V.Maniezzo and A.Colorni, “Ant System: Optimization by a
colony of cooperating agent.”, IEEE Transactions on Systems, Man and
Cybernetics, vol. B (26), 1996, pp. 29-41.

[8] E. Brinksma, J. Tretmans, and L. Verhaard, “A Framework for Test
Selection. Protocol Specification, Testing and Verification.”, XI.
Elsevier Science Publishers B.V., 1991, pp. 233-248.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

[9] S. Yoo and M. Harman, “Pareto efficient multiobjective test case
selection.”, In Proceedings of the 2007 International Symposium on
Software Testing and Analysis, 2007, pp. 140–150.

[10] E. Wong, and A.P. Mathur, “ Fault detection effectiveness of mutation
and data-flow testing,” SQJ., vol. 4, no. 1, 1995, pp.69–83.

[11] G. Rothermel, M.J. Harrold, “A safe, efficient regression test selection
technique.” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 2, April 1997. pp. 173–210

[12] G. Rothermel, and M.J. Harrold, “ Analyzing regression test selection
techniques,” IEEE Trans. on Software Engineering and Methodology,
vol. 22, no. 8, 1996, pp. 529-551.

[13] G. Rothermel, and M.J. Harrold, “Empirical studies of a safe regression
test selection technique,” IEEE Trans. on Software Engineering and
Methodology, vol. 24, no. 6, 1998, pp. 401-419.

[14] L. Yifan, and G. Jun, “Method of Automatic Regression Test Scope
Selection Using Features Digraph,” Lecture Notes in Electrical
Engineering., vol. 236, 2013, pp. 561-570.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

