
FPGA-based Compact Differential Evolution

Yutana Jewajinda

Department of Electrical Engineering
School of Engineering and Industrial Technology

Silpakorn University
Nakhon Pathom, Thailand
jewajinda_y@su.ac.th

 Abstract—This paper presents a hardware architecture for

compact Differential Evolution (cDE) in FPGA. The proposed

architecture includes a novel hardware Gaussian random

number generator (GRNG) suitable for real-value compact

evolutionary algorithms. The algorithm and hardware

architecture of the proposed GRNG are presented. The FPGA-

based cDE is designed and implemented. The set of standard

benchmark problems are used to test the proposed hardware

cDE. The experimental results demonstrate the performance of

the proposed hardware architecture in term of speed and FPGA

resources.

Keywords— compact differential evolution;hardware; FPGA

I. INTRODUCTION

Due to cost and space constraints, solving real-world
optimization problems using evolutionary algorithms (EAs)
cannot afford full scaled computing power, especially to apply
evolutionary optimization to embedded systems in which
microcontrollers or FPGA devices are commonly adopted
hardware. These embedded systems require real-time
capability at lower cost, for example, home automation and
robotics or real-time control systems.

Due to limited memory requirement, compact evolutionary
algorithms are suitable for embedded systems that have
limitation on hardware, space and cost. The compact
evolutionary algorithms represent the population of individual
solutions using probability distribution, thus reducing
requirement on memory hardware.

The compact differential evolution algorithm (cDE) is a
real-value compact evolutionary algorithm [1], which is
developed from the concept of real-value compact genetic
algorithm and a framework of differential evolution [2]. FPGA
implementation of traditional DEs and their applications are
reported [3,4]. However, there is a limited research literature
on hardware cDE.

This paper presents digital hardware architecture of cDE.
The proposed architecture includes a GRNG that can also be
applied to other real-value compact evolutionary algorithms
The cDE algorithm is partitioned into parallelized hardware
units. The FPGA-based cDE requires moderate FPGA
resources by sharing floating-point hardware units.

II. BACKGROUND

A. Compact Differential Evolution

The cDE represents the population of solutions using a
probability vector (PV) that consists of means, µ and standard
deviations, σ. By forming a probability vector (PV) of size n, a
PV is an array of Gaussian probability distributions in which
each item is characterized by (µ, σ) as follows:

{ }),(),...,,(),,(2211 nntPV σµσµσµ= (1)

In order to implement cDE in FPGA, a slightly modified cDE
algorithm is presented in Fig.1 [1], in which the square root
operation is reduced to multiplication. For updating the
standard deviation, the modified part is shown as following
equation.

2

11)(ttii µµησσ −−= ++ (2)

Where ɳ is used to adjust the rate of decreasing of the standard
deviation. Furthermore, for FPGA-based cDE, the Gaussian
random number generator (GRNGs) in hardware is necessary
and being described in the following section.

B. GRNG hardware

Generalized classification of algorithms for GRNGs can be
found in [5]. For digital hardware implementations, there are
following techniques: cumulative density function (CDF)
inversion [5], transformation using Box-Muller methods [6,7],
central limit theorem (CLT) with corrector [8], rejection using
ziggurat method [5], recursion using Wallace method [9], and
non-piecewise polynomial approximation [5]. From those
reported FPGA implementation, the trade-off are between
hardware resources, accuracy of Gaussian random numbers,
and speed that related to applications of those GRNGs.

 Traditionally, digital hardware implementations of GRNGs
are aimed for digital communication and recently for Monte-
Carlo simulation in hardware [6-11]. To adopt a GRNG
method for FPGA implementation of real-value compact
evolutionary algorithms, the memory usage is an issue since
compact EAs require no memory for population. From those
reported FPGA-based GRNGs, there are three methods that
require no memory blocks in FPGA, namely CLT-corrector,
Table-Hadamard, and piecewise-CLT (PwCLT) [10-12].

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Fig. 1. pe-DE/rand/1/bin pseudo-code

 The CLT-corrector requires optimization method prior to
hardware design for deriving high accuracy corrector [12].
Table-Hadamard also requires tables that contain approximated
normal distribution before those tables being corrected to more
Guassian distribution using Hadamard transform [10]. PwCLT
also requires optimization method to select weights for mixing
n component distributions [11]. These three methods aimed to
produce high accuracy in the tail at least more than 6 sigmas
and up to 13 sigmas, aiming for communication and for Monte-
Carlo simulation. However, as reported in [13] and [14], the
requirement of high quality GRNGs is not necessary for
evolutionary algorithm especially for DE. This founding from
[13,14] stimulates the author to design an appropriate FPGA-
based GRNG for real-value compact evolutionary algorithms.
Therefore, we propose a new GRNG for cDE that combined
central limit theorem and Hadamard transform called CLT-
Hadamard GRNG.

Fig. 2. CLT-Hadamard GRNG

III. CLT-HADAMARD GRNG

We propose a parallel GRNG based upon CLT and
Hadamard transform (HT) for FPGA-based cDE. The
proposed GRNG generates Gaussian random numbers (GRNs)
in parallel, as shown in Fig. 2. This parallel generation of
GRNs leads to parallel hardware architecture of cDE
described later in the fourth section. In addition, the accuracy
of GRNs can be adjusted via number of iterations n and size of
Hadamard matrix: N.

From Fig. 2, the first stage of the generator uses CLT as a
basis to generate GRNs that are coarsely approximated to the
Gaussian. As shown in Fig. 2, the CLT requires n additions of
uniform random numbers (URNGs). We use LUT-SR as in
[15]. In order to generate inputs in parallel for the HT in the
second stage, there are parallelized m units of URNGs, adders,
and accumulators in the first stage. By receiving the GRNs,
the HT in the second stage improves the GRNs to more
Gaussian.

A. Design and analysis of the first stage: CLT

To analyze the effect of iterative additions of uniform
random numbers (GRNs) using CLT, we consider a URNG
that generate n numbers that uniformly distributed between –m

and +m. Let y is the output of the repetitive additions. From
[12], the variance and standard deviation are calculated as
follows:

3

)(
2

2 nm
yVar y ==σ (3)

3

)(
2nm

yStd y ==σ (4)

Thus to derive the normal Gaussian distribution, the added
output need to be divided by a factor called standard

normalization factor (SNF). The SNF is σy. The more details
of SNF can be found in [12]. Therefore, SNF is used to
convert probability density function (pdf) to standard Gaussian
distribution.

counter t = 0

for I = 1 : n do

 { ** PV initialization **}
 0][=iµ

 λσ =][i

end for

generate elite by mean of PV

while not stopping criterion do

 {** Mutation **}

 generate 3 individuals xr, xs, and xt by mean of PV

 compute x’
off = xt + F(xr - xs)

 {** Crossover **}

 xoff = x
’
off

 for i = 1 : n do

 if rand(0,1) > Cr then

 xoff[i] = elite[i]

 end if

 end for

 {** Elite selection **}

 [winner, loser] = compete(xoff, elite)

 if xoff == winner then

 elite = xoff

 end if

 {** PV Update **}

 for i = 1 : n do

 ()][][
1

][1 iloseriwinner
N

i
D

tt −+=+ µµ

 2

11)(ttii µµησσ −−= ++

 end for

 t = t + 1

end while

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

TABLE I. SNFS FOR DIFFERENT VALUES OF m AND n

n
m

1 2 4

2 0.8164967 1.632993 3.265986

3 1 2 4

4 1.1547005 2.309401 4.618802
8 1.6329932 3.265986 6.531973

12 2 4 8

16 2.3094011 4.618802 9.237604

32 3.2659863 6.531973 13.06395
48 4 8 16

For different values of m and n as shown in Table I, there

are particular cases (n = 3, 12, 48) that SNF are only integer
number in multiple of two. This fact leads to replace
fixed/floating multiplication by only shift operations for
converting GRNs to standard Gaussian.

B. Hadamard Transform

Hadamard Transform (HT) has been extensively used in
image and signal processing. However, potential of using HT
to generate Gaussian random number are recently reported in
[10].

Hadamard transform (HT) of x(n) for n = 0,1,2,… N-1 is
defined as

 ∑
−

=

⋅=
1

0

)(),()(
N

n

N nxnkHkX (5)

Where HN is Hadamard matrix. Hadamard matrices of
higher order are constructed recursively as follows

 








−
=

2/2/

2/2/

NN

NN

N
HH

HH
H (6)

 The Hadamard matrix of order 1 is H 1 = [1] and order 2 is
shown as in (7)

 








−
=

11

11
2H (7)

 FPGA implementation of HT has been continuously
developed [16,17]. For basic FPGA implementation of HT, the
Fast Hadamard Transform (FHT) can be used. The algorithm
only requires addition and subtraction. Fig. 3 shows hardware
organization of FHT for N = 4. From basic block of FHT for
N=4, the FHT for N =8 can recursively be constructed using
FHT with N = 4 as shown in Fig. 4. The latency of the
hardware FHT is the depth of addition and subtraction. For N =
4 and 8, the depth is equal to 2 and 3, respectively.

C. Effect of CLT-n and Hadamard Transform to GRNs

Before being corrected by HT, the 65,536 samples of
GRNs are generated using CLT with n = 16 as shown in Fig.
5. The 65,536 samples are ranked and put into 128 bins as in
[12]. The plotted bar graph is normalized between the highest
counted and lowest counted bin and converted from normal
distribution to standard Gaussian distribution using the SNF.

x[0] x[1] x[2] x[3]

X[0] X[1] X[2] X[3]

Fig. 3. Hadamard Transform N = 4

Fig. 4. Hadamard Transform N = 8 constructed from N = 4

From Fig. 5(a) and (b), the standard normal distribution is
plotted on the same graph as the histogram of 128 bins in
order to be comparable. From Fig. 5(a), the histogram is not
perfectly shaped to normal distribution. However, after HT,
the more Gaussian is noticeable as in Fig. 5(b). Fig. 6 shows
the results of comparison between using Matlab randn
functions and the proposed method to generate GRNs; by
generating the 65,536 samples and using the generated sample
to create probability distribution (pdf) using Matlab function
(kdensity).

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b)

Fig. 5. (a) CLT: n = 16 before HT (b) CLT: n = 16 after HT: N = 8

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

-5 0 5
0

500

1000

1500

2000
randn

-5 0 5
0

500

1000

1500

2000
CLT-Hadamard

-5 0 5
0

0.1

0.2

0.3

0.4
randn pdf

-5 0 5
0

0.1

0.2

0.3

0.4
CLT-Hadamard pdf

Fig. 6. Comparision between Matlab randn and CLT-Hadamard using 65536
samples and CLT-n = 16 and Hadamard –m = 8

From Fig. 6, the results are closely identical between our
proposed GRNG and Matlab randn. In order to verify
statistical accuracy, we performs chi-square goodness-of-fit
test with confidence 0.05 by using fixed sample size of 65,536
and varying number addition n of the CLT and size of
Hadamard mastrix, N. The experiments are performed using

Matlab. Table II shows the results of the chi-square test.

The more accurate tail region on both sides after HT can
be seen in Fig. 7. From Fig. 7, the tail accuracy is around

±5.5σ, the graph is generated using 1,048,576 samples. Thus,
HT increases accuracy at the tail region and improves the bell
shape of the generated GRNs.

TABLE II. X
2
 TEST RESULTS

IV. HARDWARE ARCHITECTURE OF FPGA-BASED CDE

In this section, the digital hardware architecture of cDE is
presented.

A. Top Level Architecture

Fig. 8 shows the top level architecture of cDE. The
proposed architecture consists of six blocks: GRNG, Fixed to
Floating Point, Floating Point Datapath, Fitness Evaluation,
URNG, and Controller. The architecture employs 32-bit single
precision floating point.

-5.4 -5.2 -5 -4.8 -4.6 -4.4 -4.2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-5

4.2 4.4 4.6 4.8 5 5.2 5.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-5

Fig. 7. Tail accuracy between -5.5σ and +5.5, 1,048,576 generated samples

GRNG is implemented using the proposed CLT and
Hadamard as described in the third section. The two key
parameters are the uniform random numbers to be added
together, n and Hadamard matrix, N. The generated GRNs are
in 16-bit format represented in fixed point fractional number
valued between 0 and 1. To minimize the FPGA resource, the
adder is reused for the CLT stage. Therefore, numbers of
adders are equal to N.

For fixed point to floating point conversion, Xilinx
CoreGen operators are used. The operators convert 16-bit fixed
point to 32-bit single precision. In addition, the floating
adder/subtractor and floating point multiplier in the floating
point datapath have also been generated using Xilinx CoreGen.
Since we parallelize the architecture along dimensions, D, the
number of the floating point datapath required are equal to
dimension, D.

Fig. 8. Hardware Architecture of cDE

CLT
n

Hadamard
m

p-value Results

16 8 0.4617±0.2750 Pass

16 16 0.5314±0.3512 Pass

16 32 0.7204±0.2314 Pass

32 8 0.5978±0.2695 Pass

32 16 0.3860±0.3351 Pass

32 32 0.4128±0.4014. Pass

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Fig. 9. Hardware Architecture of one Floating Point Datapath

B. Floating Point Datapath

The floating point datapath consists of one floating point
addition/subtraction unit, one floating point multiplication unit,
a 32-bit register bank with two reads and one write ports, two
32-bit registers as accumulators, and multiplexors. All of the
32-bit single precision floating operators are generated using
Xilinx CoreGen that requires medium numbers of Xilinx DSP
blocks. The floating point datapath operates by control signals
from the controller..

C. Control Unit

The Control Unit generates control signals to other blocks
according to steps in the cDE algorithm. From the cDE
algorithm in section two, at the beginning the controller
initializes the values in each register bank in all the floating
point datapath. These values are xr, xs, xt, Elite, F, mean and
standard deviation. Then, GRNG generate 3 individuals and
the controller operates floating point datapath to generate xr,
xs, and xt by mean and standard deviation stored in the
register bank. After that, the mutated vector is computed as
x

’
off = xt + F(xr - xs). The URNG as shown in Fig. 8 is used

by the controller for crossover operation between x’
off and

Elite. Next, the controller receives the results of the fitness
evaluation by the GT bit from the fitness evaluation block.
Finally, the controller generates sequence of control signals to
find new mean and new standard deviation accordingly.

V. SIMULATION AND IMPLEMENTATION RESULTS

There are two experiments. First, the behavioral model of
the proposed architecture is tested by selected benchmark
problems. Second, the performance of the proposed hardware
architecture is compared to software implementation on multi-
core processors.

In order to measure performance of the FPGA-based cDE
that uses CLT-Hadamard GRNG, five problems from the
CEC2005 testbed, see [1,2], are selected as follows:

f1 Shifted Sphere function
f2 Shifted Schwefel’s Problem 1.2
f3 Shifted Rotated High Conditioned Eliptic Function

f4 Shifted Schwefel’s Problem 1.2 with Noise
f5 Schwefels Problem 2.6 with Global Optimum on Bounds

A. Comparision bettwen the proposed GRNG and a standard

GRNGs on the benchmark problems

 Running the benchmark problems, cDE that uses the
proposed CLT-Hadamard GRNG are compared to cDE that
uses a high-quality GRNG, a ziggurat GRNG [5]. The Q-test
described in [14] is applied to experiments shown in Table III.
The Q measure is computed as Q = ne/R where R is the
percentage of the successful runs, the run is reach a certain
predetermined results. And ne is the number of fitness
evaluations required to reach these thresholds. The 30
independent runs have been performed. For each single run,
numbers of fitness evaluations or generations are fixed to
maximum at 100,000. The averaged best fitness values are
reported in Table III. The results show that the average fitness
values between the two cDEs with different GRNG are closely
in same digit range.

TABLE III. AVERAGE FINAL FITNESS ± STANDARD DEVIATION FOR 30D

PROBLEMS

Test

Problem

cDE

CLT-n = 16

Hadamard N = 8

cDE

Ziggurat GRNG

f1 6.253e-05±2.35e-05 3.172e-05±1.65e-05

f2 5.847e-01±4.21e-01 4.529e-01±3.37e-01

f3 3.051e+06±2.37e+04 1.281e+06±2.39e+04

f4 9.672 e+02±4.54e+02 5.337 e+02±2.91e+02

f5 1.052 e+04±5.26e+04 1.813 e+04±3.57e+04

 In spite of more detail investigations are needed in term of
number of test problems and comprehensively statistical tests;
the two methods deliver closely performance. Moreover, the
simulation results in this study extend the finding in [13,14] to
compact DE that medium GRNG quality can be used for cDE.

B. Speed up comparision between FPGA-based cDE and

software cDE

In this section, the computation time between FPGA and
software implementation on PC computers are measured. The
Virtex-5 FPGA running at 300Mhz and software
implementation running on Intel Core i-3 and i-7 are
compared.

To measure speed up of the FPGA-based cDE, the non-
shifted Sphere function is used. The reasons for this is because
we only counts clock cycles required in the hardware cDE and
not clock cycles used by the fitness evaluation since the test
function has to be modeled in behavioral Verilog behavioral
SystemVerilog and linked with C function. Also, the fitness
evaluation is problem dependent. For the fitness evaluation,
the Sphere function is shown as follows:

 ∑
=

=
D

i

izxf
1

2

1)((8)

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

TABLE IV. PERFORMANCE RESULTS FOR THE SPHERE FUNCTION WITH

DIMENSION = 16 BY VARYING GENERATIONS

No. of

gen.

FPGA

300MHz

(ms)

Core-i3

2.2GHz

(ms)

Core-i7

3.4GHz

(ms)

Speedup

over

Core-i3

Speedup

over

Core-i7

1000 0.356 285.174 99.727 801.96 280.45

2000 0.697 552.064 185.029 791.492 265.27

4000 1.413 983.269 301.573 697.578 213.95

8000 2.788 1815.934 541.373 651.408 194.2

10000 3.438 2146.665 651.999 624.345 189.52

TABLE V. GRNG COMPARISON WITH PUBLISHED WORK (ALL

ARCHITECTURES USE XILINX VIRTEX-2/4/5 DEVICES)

Design
Logic

Slice
Multipiler

Block

RAM
Tail Acc.

Speed

MSamples/

sec

BM[6] 1528 12 3 8.2σ 466

BM[7] 534 3 2 6.6σ 440

CLT(LTA) [12] 625 7 6 12σ 115

Table-Hadam [10] 102 0 0 8σ 351

Proposed 143 0 0 ~5.5σ 483

 Table IV shows the speed up of the FPGA-based cDE for
problem dimension of 16. The FPGA-based cDE uses CLT: n
= 16 and Hadamard: N = 8. The experimental results show that
the FPGA-based cDE can archive speedup around 600 fold
over serial software implementation on Core-i3 and around 200
fold over Core-i7. This increased speedup occurs due to the
more numbers of parallel floating point datapath using DSP
block inside the FPGA.

 Table V shows the FPGA resources used by the proposed
GRNG in comparison to the other published works. In spite of
the lower tail accuracy, the purposed method requires much
lower hardware resources and adequate for cDE algorithm.
When compared to Table-Hadamard method, even though
Table-Hadamard requires less logic resouces in FPGA, the
proposed GRNG is more straight forward, simpler to
implement in hardware and not requiring the complicated
optimization process as in Table-Hadamard [10] and in [11].

 The FPGA resources required for the one dimension of
hardware cDE is shown in Table VI. The FPGA resources are
moderately utilized. None of the block RAM are required.
However, the DSP blocks inside the FPGA are utilized for fast
floating point operation

TABLE VI. FPGA RESOURCES FOR ONE DIMENSION (USE XILINX
VIRTEX-5 DEVICES)

 Slice LUT Slice Reg.
DSP

48E1

Blk.

RAM
Latency

Freq.

Mhz

GRNG 143 68 0 0 20 410

Floating Point
Datapath

354 524 4 0 12 372

Main Cntrl. 86 114 0 0 52 410

Total 583 706 4 0 52 372

.

VI. CONCLUSIONS

 The FPGA hardware architecture of cDE is presented. The
new GRNG is also proposed. This GRNG can also be applied
to other real-value compact evolutionary algorithms as well.
The presented parallel hardware architecture utilizes the same
floating point datapath units in order to minimize the FPGA
resources. The experimental results show the performance of
the proposed architecture tested with the standard set of
benchmark problems. By requiring moderate FPGA resource,
this proposed architecture can be further applied for real-value
hardware optimization engine using lower cost FPGA devices
for FPGA-based embedded systems.

REFERENCES

[1] E. Mininno, F. Neri, F. Cupertino and D. Naso, “Compact Diffential
Evolution”, IEEE Trans. Evol., Vol.15, No. 1, pp. 32-53, Feb. 2011.

[2] S. Das and P.N.Suganthan, “Differential Evolution: A Survey of the
State-of-the-Art”, IEEE Trans. Evol., Vol.15, No. 1, pp. 1-31, Feb. 2011.

[3] R. Peesapati, KK. Anumandla, S. Kudikala, S. L. Sabat, “SOC based
floating point implementation of Differential Evolution using FPGA”,
Journal of Design Auto., Vol. 16, no. 4, pp 221-240, 2012.

[4] R. Peesapati, KK. Anumandla, S. Kudikala, S. L. Sabat., “Comparative
study of system on chip based solution for floating and fixed point
differential evolution algorithm”, Swarm and Evol., No. 19, pp. 68-81,
2014.

[5] D. B. Thomas, W. Luk, P. H. W. Leong and J. D. Villasenor "Gaussian
random number generators", ACM Comput. Surv., vol. 39, no. 4,
pp.11 2007

[6] D.-U. Lee, J. D. Villasenor, W. Luk and P. H. W. Leong "A hardware
Gaussian noise generator using the Box-Muller method and its error
analysis", IEEE Trans. Comput., vol. 55, no. 6, pp.659 -671 2006.

[7] A. Alimohammad, S. F. Fard, B. F. Cockburn and C. Schlegel "A
compact and accurate Gaussian variate generator", IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 16, no. 5, pp.517 -527 2008

[8] J. S. Malik, J. N. Malik, A. Hemani and N. D. Gohar "Generating high
tail accuracy Gaussian random numbers in hardware using central limit
theorem", Proc. 19th Int. Conf. VLSI-SoC, pp.60 -65, 2013

[9] D.-U. Lee, W. Luk, J. D. Villasenor, G. Zhang and P. H. W. Leong "A
hardware Gaussian noise generator using the Wallace method", IEEE
Trans.VLSI Syst., vol. 13, no. 8, pp.911 -920 2005

[10] D.B. Thomas, “Parallel generation of Gaussian random numbers using
the table-hadamard transform,” in Proc. FCCM, 2013.

[11] D.B. Thomas, “FPGA Gaussian Random Number Generators with
Guaranteed Statistical Accuracy,” in Proc. FCCM, 2014.

[12] JS. Malik, A. Hemani, JN. Malil, B. and NG. Gohar, “Revisiting
Central Limit Theorem: Accurate Gaussian Random Number Generation
in VLSI”, IEEE Trans. VLSI Sys., Vol. 23, No. 5, May. 2015.

[13] M. Montes, A.V. Rodriguez , “Sensitivity of Evolutionary Algorithms
on the Random Number Generator,” ICANNGA 2011, LNCS vol. 6593,
pp. 371-380. Springer, 2011

[14] Tirronen, Ville et. al, “Study on the Effects of Pseudorandom Generation
Quality on the Performance of Differential Evolution,” ICANNGA
2011, LNCS vol. 6593, pp. 361-370. Springer, Heidelberg, 2011

[15] D. B. Thomas and W. Luk "The LUT-SR family of uniform random
number generators for FPGA architectures", IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp.761 -770 2013.

[16] A. Amira, A. Bouridane, P. Milligan, and M. Roula. Novel FPGA
implementations of walsh-hadamard transforms for signal processing.
IEE Proceedings-Vision, Image, 148(6):377-383, Mar. 2001

[17] Meher, P.K.; Patra, J.C.,” Fully-pipelined efficient architectures for
FPGA realization of discrete Hadamard transform”, Proc. Int. Conf
Application-Specific, 20

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

