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 Abstract—This paper presents a hardware architecture for 

compact Differential Evolution (cDE) in FPGA. The proposed 

architecture includes a novel hardware Gaussian random 

number generator (GRNG) suitable for real-value compact 

evolutionary algorithms. The algorithm and hardware 

architecture of the proposed GRNG are presented. The FPGA-

based cDE is designed and implemented. The set of standard 

benchmark problems are used to test the proposed hardware 

cDE. The experimental results demonstrate the performance of 

the proposed hardware architecture in term of speed and FPGA 

resources.   
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I. INTRODUCTION

Due to cost and space constraints, solving real-world 
optimization problems using evolutionary algorithms (EAs) 
cannot afford full scaled computing power, especially to apply 
evolutionary optimization to embedded systems in which 
microcontrollers or FPGA devices are commonly adopted 
hardware. These embedded systems require real-time 
capability at lower cost, for example, home automation and 
robotics or real-time control systems.  

Due to limited memory requirement, compact evolutionary 
algorithms are suitable for embedded systems that have 
limitation on hardware, space and cost. The compact 
evolutionary algorithms represent the population of individual 
solutions using probability distribution, thus reducing 
requirement on memory hardware.  

The compact differential evolution algorithm (cDE) is a 
real-value compact evolutionary algorithm [1], which is 
developed from the concept of real-value compact genetic 
algorithm and a framework of differential evolution [2]. FPGA 
implementation of traditional DEs and their applications are 
reported [3,4]. However, there is a limited research literature 
on hardware cDE.  

This paper presents digital hardware architecture of cDE. 
The proposed architecture includes a GRNG that can also be 
applied to other real-value compact evolutionary algorithms 
The cDE algorithm is partitioned into parallelized hardware 
units.  The FPGA-based cDE requires moderate FPGA 
resources by sharing floating-point hardware units.  

II. BACKGROUND

A. Compact Differential Evolution

The cDE represents the population of solutions using a
probability vector (PV) that consists of means, µ and standard 
deviations, σ.  By forming a probability vector (PV) of size n, a 
PV is an array of  Gaussian probability distributions in which 
each item is characterized by   (µ, σ )   as  follows: 

{ }),(),...,,(),,( 2211 nntPV σµσµσµ=  (1) 

In order to implement cDE in FPGA, a slightly modified cDE 
algorithm is presented in Fig.1 [1], in which the square root 
operation is reduced to multiplication. For updating the 
standard deviation, the modified part is shown as following 
equation.  

2

11 )( ttii µµησσ −−= ++  (2) 

Where ɳ is used to adjust the rate of decreasing of the standard 
deviation. Furthermore, for FPGA-based cDE, the Gaussian 
random number generator (GRNGs) in hardware is necessary 
and being described in the following section.  

B. GRNG hardware

Generalized classification of algorithms for GRNGs can be
found in [5]. For digital hardware implementations, there are 
following techniques: cumulative density function (CDF) 
inversion [5], transformation using Box-Muller methods [6,7], 
central limit theorem (CLT) with corrector [8], rejection using 
ziggurat method [5],  recursion using Wallace method [9], and 
non-piecewise polynomial approximation [5]. From those 
reported FPGA implementation, the trade-off are between 
hardware resources, accuracy of Gaussian random numbers, 
and speed that related to applications of those GRNGs. 

    Traditionally, digital hardware implementations of GRNGs 
are aimed for digital communication and recently for Monte-
Carlo simulation in hardware [6-11]. To adopt a GRNG 
method for FPGA implementation of real-value compact 
evolutionary algorithms, the memory usage is an issue since 
compact EAs require no memory for population. From those 
reported FPGA-based GRNGs, there are three methods that 
require no memory blocks in FPGA, namely CLT-corrector, 
Table-Hadamard, and piecewise-CLT (PwCLT) [10-12].   
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Fig. 1. pe-DE/rand/1/bin pseudo-code 

 The CLT-corrector requires optimization method prior to 
hardware design for deriving high accuracy corrector [12]. 
Table-Hadamard also requires tables that contain approximated 
normal distribution before those tables being corrected to more 
Guassian distribution using Hadamard transform [10]. PwCLT 
also requires optimization method to select weights for mixing 
n component distributions [11]. These three methods aimed to 
produce high accuracy in the tail at least more than 6 sigmas 
and up to 13 sigmas, aiming for communication and for Monte-
Carlo simulation. However, as reported in [13] and [14], the 
requirement of high quality GRNGs is not necessary for 
evolutionary algorithm especially for DE. This founding from 
[13,14] stimulates the author to design an appropriate FPGA-
based GRNG for real-value compact evolutionary algorithms. 
Therefore, we propose a new GRNG for cDE that combined 
central limit theorem and Hadamard transform called CLT-
Hadamard GRNG. 

 

Fig. 2. CLT-Hadamard GRNG 

III. CLT-HADAMARD GRNG 

We propose a parallel GRNG based upon CLT and 
Hadamard transform (HT) for FPGA-based cDE. The 
proposed GRNG generates Gaussian random numbers (GRNs) 
in parallel, as shown in Fig. 2. This parallel generation of 
GRNs leads to parallel hardware architecture of cDE 
described later in the fourth section. In addition, the accuracy 
of GRNs can be adjusted via number of iterations n and size of 
Hadamard matrix: N.  

From Fig. 2, the first stage of the generator uses CLT as a 
basis to generate GRNs that are coarsely approximated to the 
Gaussian. As shown in Fig. 2, the CLT requires n additions of 
uniform random numbers (URNGs). We use LUT-SR as in 
[15]. In order to generate inputs in parallel for the HT in the 
second stage, there are parallelized m units of URNGs, adders, 
and accumulators in the first stage. By receiving the GRNs, 
the HT in the second stage improves the GRNs to more 
Gaussian.   

A. Design and analysis of the first stage: CLT 

To analyze the effect of iterative additions of uniform 
random numbers (GRNs) using CLT, we consider a URNG 
that generate n numbers that uniformly distributed between –m 

and +m.  Let y is the output of the repetitive additions. From 
[12], the variance and standard deviation are calculated as 
follows:   

                    
3
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yVar y ==σ                            (3) 
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Thus to derive the normal Gaussian distribution, the added 
output need to be divided by a factor called standard 

normalization factor (SNF). The SNF is σy.  The more details 
of SNF can be found in [12]. Therefore, SNF is used to 
convert probability density function (pdf) to standard Gaussian 
distribution.  

 

counter   t = 0 

for  I = 1 : n do 

    { ** PV  initialization **} 
   0][ =iµ  

   λσ =][i  

end for   

generate  elite  by mean of PV 

while  not  stopping  criterion   do 

       {** Mutation **} 

       generate 3 individuals  xr,  xs, and  xt  by mean of PV  

       compute   x’
off   = xt   +   F(xr - xs ) 

      {** Crossover **} 

       xoff  =  x
’
off 

       for  i = 1 : n  do 

            if  rand(0,1)  >  Cr then 

                 xoff[i] = elite[i] 

            end if                       

       end for 

      {** Elite selection **} 

       [winner, loser] = compete(xoff, elite) 

       if  xoff  == winner  then  

            elite = xoff 

       end if 

      {** PV Update **} 

      for i = 1 : n do 

         ( )][][
1

][1 iloseriwinner
N

i
D

tt −+=+ µµ  

        2
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      end for   

      t  =  t + 1               

end while 
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TABLE I.  SNFS FOR DIFFERENT VALUES OF m AND n 

n 
m 

1 2 4 

2  0.8164967 1.632993 3.265986 

3 1 2 4 

4 1.1547005 2.309401 4.618802 
8 1.6329932 3.265986 6.531973 

12 2 4 8 

16 2.3094011 4.618802 9.237604 

32 3.2659863 6.531973 13.06395 
48 4 8 16 

 
For different values of m and n as shown in Table I, there 

are particular cases (n = 3, 12, 48) that SNF are only integer 
number in multiple of two. This fact leads to replace 
fixed/floating multiplication by only shift operations for 
converting GRNs to standard Gaussian.  

B. Hadamard Transform 

Hadamard Transform (HT) has been extensively used in 
image and signal processing. However, potential of using HT 
to generate Gaussian random number are recently reported in 
[10].    

Hadamard transform (HT) of x(n) for n = 0,1,2,… N-1 is 
defined as 

             ∑
−

=

⋅=
1

0
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N

n

N nxnkHkX                         (5) 

Where HN is Hadamard matrix. Hadamard matrices of 
higher order are constructed recursively as follows 
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 The Hadamard matrix of order 1 is H 1 = [1] and order 2 is 
shown as in (7) 
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 FPGA implementation of HT has been continuously 
developed [16,17].  For basic FPGA implementation of HT, the 
Fast Hadamard Transform (FHT) can be used. The algorithm 
only requires addition and subtraction. Fig. 3 shows hardware 
organization of FHT for N = 4.   From basic block of FHT for 
N=4, the FHT for N =8 can recursively be constructed using 
FHT with N = 4 as shown in Fig. 4. The latency of the 
hardware FHT is the depth of addition and subtraction. For N = 
4 and 8, the depth is equal to 2 and 3, respectively.  

C. Effect of CLT-n and Hadamard Transform to GRNs 

Before being corrected by HT, the 65,536 samples of 
GRNs are generated using CLT with n = 16 as shown in Fig. 
5. The 65,536 samples are ranked and put into 128 bins as in 
[12]. The plotted bar graph is normalized between the highest 
counted and lowest counted bin and converted from normal 
distribution to standard Gaussian distribution using the SNF. 
  

x[0] x[1] x[2] x[3]

X[0] X[1] X[2] X[3]  

Fig. 3. Hadamard Transform N = 4 

 

Fig. 4. Hadamard Transform N = 8  constructed from N = 4  

From Fig. 5(a) and (b), the standard normal distribution is 
plotted on the same graph as the histogram of 128 bins in 
order to be comparable. From Fig. 5(a), the histogram is not 
perfectly shaped to normal distribution. However, after HT, 
the more Gaussian is noticeable as in Fig. 5(b).   Fig. 6 shows 
the results of comparison between using Matlab randn 
functions and the proposed method to generate GRNs; by 
generating the 65,536 samples and using the generated sample 
to create probability distribution (pdf) using Matlab function 
(kdensity).  
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Fig. 5.  (a) CLT: n = 16 before  HT       (b) CLT:  n = 16  after  HT:  N = 8  
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Fig. 6. Comparision between Matlab randn and CLT-Hadamard using 65536 
samples and CLT-n = 16 and Hadamard –m = 8 

From Fig. 6, the results are closely identical between our 
proposed GRNG and Matlab randn. In order to verify 
statistical accuracy, we performs chi-square goodness-of-fit 
test with confidence 0.05 by using fixed sample size of 65,536 
and varying number addition n of the CLT and size of 
Hadamard mastrix, N. The experiments are performed using 

Matlab. Table II shows the results of the chi-square test.   

The more accurate tail region on both sides after HT can 
be seen in Fig. 7.  From Fig. 7, the tail accuracy is around 

±5.5σ, the graph is generated using 1,048,576 samples. Thus, 
HT increases accuracy at the tail region and improves the bell 
shape of the generated GRNs. 

TABLE II.  X
2
  TEST RESULTS 

 
 
 
 
 
 
 
 
 
 

 

IV. HARDWARE ARCHITECTURE OF FPGA-BASED CDE 

In this section, the digital hardware architecture of cDE is 
presented.  

A. Top Level Architecture 

Fig. 8 shows the top level architecture of cDE. The 
proposed architecture consists of six blocks: GRNG, Fixed to 
Floating Point, Floating Point Datapath, Fitness Evaluation,  
URNG, and Controller. The architecture employs 32-bit single 
precision floating point.  
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Fig. 7. Tail accuracy between -5.5σ and  +5.5,  1,048,576  generated samples 

GRNG is implemented using the proposed CLT and 
Hadamard as described in the third section. The two key 
parameters are the uniform random numbers to be added 
together, n and Hadamard matrix, N. The generated GRNs are 
in 16-bit format represented in fixed point fractional number 
valued between 0 and 1. To minimize the FPGA resource, the 
adder is reused for the CLT stage. Therefore, numbers of 
adders are equal to N.  

For fixed point to floating point conversion, Xilinx 
CoreGen operators are used. The operators convert 16-bit fixed 
point to 32-bit single precision. In addition, the floating 
adder/subtractor and floating point multiplier in the floating 
point datapath have also been generated using Xilinx CoreGen. 
Since we parallelize the architecture along dimensions, D, the 
number of the floating point datapath required are equal to 
dimension, D. 

 

Fig. 8. Hardware Architecture of  cDE 

CLT 
n 

Hadamard  
m 

p-value Results 

16 8 0.4617±0.2750 Pass 

16 16 0.5314±0.3512 Pass 

16 32 0.7204±0.2314 Pass 

32 8 0.5978±0.2695 Pass 

32 16 0.3860±0.3351 Pass 

32 32 0.4128±0.4014. Pass 
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Fig. 9. Hardware Architecture of one Floating Point Datapath 

B. Floating Point Datapath 

The floating point datapath consists of one floating point 
addition/subtraction unit, one floating point multiplication unit, 
a 32-bit register bank with two reads and one write ports, two 
32-bit registers as accumulators, and multiplexors.  All of the 
32-bit single precision floating operators are generated using 
Xilinx CoreGen that requires medium numbers of Xilinx DSP 
blocks. The floating point datapath operates by control signals 
from the controller.. 

C. Control Unit 

The Control Unit generates control signals to other blocks 
according to steps in the cDE algorithm. From the cDE 
algorithm in section two, at the beginning the controller 
initializes the values in each register bank in all the floating 
point datapath. These values are  xr,  xs,  xt,  Elite, F, mean and 
standard deviation. Then, GRNG generate 3 individuals and 
the controller operates floating point datapath to generate  xr,  
xs, and  xt  by mean and standard deviation stored in the 
register bank. After that, the mutated vector is computed as   
x

’
off   = xt   +   F(xr - xs ). The URNG as shown in Fig. 8 is used 

by the controller for crossover operation between x’
off and 

Elite.  Next, the controller receives the results of the fitness 
evaluation by the GT bit from the fitness evaluation block. 
Finally, the controller generates sequence of control signals to 
find new mean and new standard deviation accordingly. 

V. SIMULATION AND IMPLEMENTATION RESULTS 

There are two experiments. First, the behavioral model of 
the proposed architecture is tested by selected benchmark 
problems. Second, the performance of the proposed hardware 
architecture is compared to software implementation on multi-
core processors.  

In order to measure performance of the FPGA-based cDE 
that uses CLT-Hadamard GRNG, five problems from the 
CEC2005 testbed, see [1,2], are selected as follows:   

f1  Shifted Sphere function 
f2  Shifted Schwefel’s Problem 1.2 
f3  Shifted Rotated High Conditioned Eliptic Function 

f4  Shifted Schwefel’s Problem 1.2 with Noise 
f5  Schwefels Problem 2.6 with Global Optimum on Bounds 

A. Comparision bettwen the proposed GRNG and a standard 

GRNGs on the benchmark problems 

 Running the benchmark problems, cDE that uses the 
proposed CLT-Hadamard GRNG are compared to cDE that 
uses a high-quality GRNG, a ziggurat GRNG [5]. The Q-test 
described in [14] is applied to experiments shown in Table III. 
The Q measure is computed as Q = ne/R where R is the 
percentage of the successful runs, the run is reach a certain 
predetermined results. And ne is the number of fitness 
evaluations required to reach these thresholds. The 30 
independent runs have been performed.  For each single run, 
numbers of fitness evaluations or generations are fixed to 
maximum at 100,000. The averaged best fitness values are 
reported in Table III.  The results show that the average fitness 
values between the two cDEs with different GRNG are closely 
in same digit range.  

TABLE III.  AVERAGE FINAL FITNESS ± STANDARD DEVIATION FOR 30D 

PROBLEMS 

Test 

Problem 

cDE  

CLT-n = 16 

Hadamard N = 8 

cDE  

Ziggurat GRNG 

f1 6.253e-05±2.35e-05 3.172e-05±1.65e-05 

f2 5.847e-01±4.21e-01 4.529e-01±3.37e-01 

f3 3.051e+06±2.37e+04 1.281e+06±2.39e+04 

f4 9.672 e+02±4.54e+02 5.337 e+02±2.91e+02 

f5 1.052 e+04±5.26e+04 1.813 e+04±3.57e+04 

 
 In spite of more detail investigations are needed in term of 
number of test problems and comprehensively statistical tests; 
the two methods deliver closely performance. Moreover, the 
simulation results in this study extend the finding in [13,14] to 
compact DE that medium GRNG quality can be used for cDE.   

B. Speed up comparision between FPGA-based cDE and 

software cDE 

In this section, the computation time between FPGA and 
software implementation on PC computers are measured. The 
Virtex-5 FPGA running at 300Mhz and software 
implementation running on Intel Core i-3 and i-7 are 
compared.  

To measure speed up of the FPGA-based cDE, the non-
shifted Sphere function is used. The reasons for this is because 
we only counts clock cycles required in the hardware cDE and 
not clock cycles used by the fitness evaluation since the test 
function has to be modeled in behavioral Verilog behavioral 
SystemVerilog and linked with C function. Also, the fitness 
evaluation is problem dependent. For the fitness evaluation, 
the Sphere function is shown as follows: 

                            ∑
=

=
D

i

izxf
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2

1 )(                                   (8)                         
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TABLE IV.  PERFORMANCE RESULTS FOR THE SPHERE FUNCTION WITH 

DIMENSION = 16 BY VARYING GENERATIONS 

No. of 

gen. 

FPGA 

300MHz 

(ms) 

Core-i3  

2.2GHz 

(ms) 

Core-i7 

3.4GHz  

(ms) 

Speedup 

over 

Core-i3 

Speedup  

over   

Core-i7 

1000 0.356 285.174 99.727 801.96 280.45 

2000 0.697 552.064 185.029 791.492 265.27 

4000 1.413 983.269 301.573 697.578 213.95 

8000 2.788 1815.934 541.373 651.408 194.2 

10000 3.438 2146.665 651.999 624.345 189.52 

 

TABLE V.  GRNG COMPARISON WITH PUBLISHED WORK (ALL 

ARCHITECTURES USE XILINX VIRTEX-2/4/5 DEVICES) 

Design 
Logic 

Slice 
Multipiler

Block 

RAM 
Tail Acc. 

Speed 

MSamples/

sec 

BM[6] 1528 12 3 8.2σ 466 

BM[7] 534 3 2 6.6σ 440 

CLT(LTA) [12] 625 7 6 12σ 115 

Table-Hadam [10] 102 0 0 8σ 351 

Proposed 143 0 0 ~5.5σ 483 

 

 Table IV shows the speed up of the FPGA-based cDE for 
problem dimension of 16.  The FPGA-based cDE uses CLT: n  
= 16 and Hadamard: N = 8.  The experimental results show that 
the FPGA-based cDE can archive speedup around 600 fold 
over serial software implementation on Core-i3 and around 200 
fold over Core-i7. This increased speedup occurs due to the 
more numbers of parallel floating point datapath using DSP 
block inside the FPGA. 

 Table V shows the FPGA resources used by the proposed 
GRNG in comparison to the other published works. In spite of 
the lower tail accuracy, the purposed method requires much 
lower hardware resources and adequate for cDE algorithm. 
When compared to Table-Hadamard method, even though 
Table-Hadamard requires less logic resouces in FPGA, the 
proposed GRNG is more straight forward, simpler to 
implement in hardware and not requiring the complicated 
optimization process as in Table-Hadamard [10] and in [11]. 

       The FPGA resources required for the one dimension of 
hardware cDE is shown in Table VI. The FPGA resources are 
moderately  utilized.  None of the block RAM are required. 
However, the DSP blocks inside the FPGA are utilized for fast 
floating point operation 

TABLE VI.  FPGA RESOURCES FOR ONE DIMENSION ( USE XILINX 
VIRTEX-5 DEVICES) 

 Slice LUT Slice Reg. 
DSP 

48E1 

Blk. 

RAM 
Latency 

Freq. 

Mhz 

GRNG 143 68 0 0 20 410 

Floating Point 
Datapath 

354 524 4 0 12 372 

Main Cntrl. 86 114 0 0 52 410 

Total 583 706 4 0 52 372 

  
. 

VI. CONCLUSIONS 

      The FPGA hardware architecture of cDE is presented. The 
new GRNG is also proposed. This GRNG can also be applied 
to other real-value compact evolutionary algorithms as well. 
The presented parallel hardware architecture utilizes the same 
floating point datapath units in order to minimize the FPGA 
resources. The experimental results show the performance of 
the proposed architecture tested with the standard set of 
benchmark problems. By requiring moderate FPGA resource, 
this proposed architecture can be further applied for real-value 
hardware optimization engine using lower cost FPGA devices 
for FPGA-based embedded systems.   
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