
Performance Measurement of SimpleDB APIs for
Different Data Consistency Models

Pornpan Ampaporn and Sethavidh Gertphol
Department of Computer Science, Faculty of Science,

Kasetsart University, Bangkok, Thailand

Abstract—Cloud platform providers usually offer several
APIs (Application Program Interface) to help facilitate
programmers to utilize cloud resources effectively by hiding
complex cloud structures and mechanisms. However, there are
some aspects of distributed computing that cannot be hidden.
Depending on data consistency models, two or more clients may
not see the same current state of the data. Developers should
understand the performance of available APIs and consistency
models they provide. This paper explores the performance of a
suite of APIs that can be used to implement two different data
consistency models in SimpleDB, a distributed non-relational
database-as-a-service provided by Amazon. Based on our
experiment, read requests in two consistency models offered by
Amazon SimpleDB performed almost identically, with median
latency of 16 ms. Write performance was about 3 times slower,
with 56 ms median latency. In addition, there were greater
performance variations for writes than reads. Lastly, a strong
consistency model worked as advertised, returning latest value
with every read. On the other hand, the correctness of an
eventual consistency read depended primarily on the elapsed
time since last write operation.

Keywords—Cloud Computing; consistency models; Amazon
Simple DB; performance measurement

I. INTRODUCTION
Cloud development platforms such as Google App Engine

or Amazon Web Services are becoming a mature technology
for convenient and rapid application development and
deployment on the Cloud. Platform-as-a-Service cloud
providers create several tools and API (Application Program
Interface) that helps developers use, monitor, and manage
cloud resources programmatically. These APIs include reading
and writing distributed non-relational database, creating and
scaling the number of virtual machine instances, managing
users of cloud resources, etc.

While these APIs tremendously facilitate programmers to
utilize cloud resources effectively by hiding complex cloud
structures and mechanisms, there are some aspects of
distributed computing that cannot be hidden. One of the issues
that developers must understand is data consistency in
distributed system [1]. Because information may be replicated
in several data stores and updates may occur at any data store,
two or more clients may not see the same current state of the
data (depending on data consistency models). Cloud providers
usually have APIs to implement some forms of data
consistency, but it depends on each developer to choose an
appropriate model (or a mix of models) for his application.

Consistency is not the only concern when deciding on a
consistency model. A software engineer must also take into
account the performance of mechanisms used to implement
different models, for example, the latency and throughput of
read and write requests for each model. Performance variation
may also be another factor to be considered; the developers
may want an application that performs similarly every time
rather than one that is very fast most of the time but may
sometimes execute sluggishly.

This paper explores the performance of a suite of APIs that
can be used to implement two different data consistency
models in SimpleDB, a distributed non-relational database-as-
a-service provided by Amazon. We also test the consistency
models offered by SimpleDB to evaluate the correctness of
data with respect to time after last write. In this way, a
developer will have a complete information to judiciously
make a trade-off between data consistency, acceptable
inconsistent data probability, and performance.

The paper is organized as follows. Section 2 discusses
related work in the field. Section 3 explains the SimpleDB and
available consistency models while Section 4 outlines out test
programs and experiment setup. Section 5 shows test results
and discussions follows in Section 6. Section 7 concludes the
paper.

II. RELATED WORK
Data consistency model is an important issue in distributed

computing. This topic is included in several text books
regarding the issue, such as [1]. When cloud computing
becomes popular, data consistency is considered to be a
differentiating service for cloud platform providers, i.e., it
could be an issue to be negotiated and included in SLA
(service-level agreement) [7] or charged for extra service [6].

Performance measurement of operations that used to
implement different data consistency models had been done in
[5] and [8]. In [8] the authors developed an experiment system
using Amazon S3 that could adapt consistency models during
run time and measure its performance. Our work is similar to
work in [5] which also measure performances of read and write
operations in Amazon SimpleDB and Google Big Table, but
we focus more on latency and its variation during a day.

This research was funded by Kasetsart University Research and
Development Institute

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

III. SYSTEM MODEL
In this section, we explain our experiment platforms which

are Amazon EC2 and SimpleDB briefly. More importantly, the
consistency models available to developers are discussed.

A. Amazon EC2 and SimpleDB
Amazon EC2 [2] is a cloud computing platform that

provides virtual machine configuration, deployment, and
management to customers. A user can choose VM capabilities
(e.g. processing power and the amount of memory), an image
to be used (which includes an operating system and/or other
applications), and then deploy the VM in one of several regions
around the world (e.g. East Coast North America, Asia-Pacific,
or Europe). The user can then remotely access and manage the
VM through the Internet.

SimpleDB [3] is a type of non-relational distributed
database-as-a-service provided by Amazon. A developer using
SimpleDB does not have to administer the distributed database
himself, he can just create a SimpleDB in one geographic
region and read/write to it using provided APIs. Amazon will
take care of data replication and distribution.

B. Consistency Model in Amazon SimpleDB
While Amazon can help developers manage the backend

management of SimpleDB, programmers still need to
understand consistency models available when working with a
distributed database. Amazon provides two consistency models
for retrieving data from SimpleDB: eventual and strong
consistency. A strong consistent read (select and get from a
database) will always retrieve the latest write from the
database. On the other hand, an eventual consistent read may
retrieve the latest value, or a stale value, or even a previously
written value [4]. Amazon states that strong consistent reads
potentially has a higher read latency and lower throughput
comparing to eventual consistent reads.

IV. EXPERIMENT
The goal of our experiment is to evaluate the performance

of SimpleDB in three operations: write, strong consistent read,
and eventual consistent read. The experiment was also setup to
evaluate the variation of SimpleDB performance during a day.
We are also interested in the behavior and results of eventual
consistent read to read the latest write data.

A. Test Program
We developed a simple web application that will repeatedly

write and read data from a SimpleDB database. The database is
a just a single integer attribute. The test program consists of
two parts: a writer and a reader. When activated, a writer starts
writing a number to SimpleDB. This number is kept at the
writer and initially starts at 0. Every 2000 milliseconds, the
writer increments the number by 1 and writes it to SimpleDB.
The writer stops after writing number 99. The start time and
finish time of each write are recorded.

The reader starts execution after the first 2000 milliseconds
has passed from when the writer starts. The reader repeatedly,
and as fast as possible, reads a value from the SimpleDB

database and records it along with the start time and finish time
of each read. The reader can be configured to use either strong
or eventual consistent read, and it will use the same method
until it stops. The reader stops when it reads a value 99 or when
five minutes has passed. Since the reader and the writer are
located on the same machine, clock synchronization is not an
issue in this test program.

B. Experiment Setup
The experiment was conducted during the two-day period

in April 2015. A SimpleDB domain was created in the US
North East Region of Amazon Web Services. An m1.small
instance which has 1 virtual CPU and 1.7 GiB memory
installed with Ubuntu 12.04 and Tomcat 7.0 with JDK 1.7 was
initiated also in the US North East Region. The test program
was deployed to the VM instance.

During the first day, the reader was configured to use
eventual consistent read. The test program was executed once
every hour and the resulting performance and read records was
saved. Then the reader was re-configured to use strong
consistent read and the experiment repeated 24 times (once
every hour) in the second day.

V. RESULTS
After the experiment concluded, we recorded 260,132

eventual consistent reads together with 2,400 writes and
225,801 strong consistent reads together with their 2,200
writes. There were two executions of strong reads that
produced errors and we discarded those recordings. This is the
reason why the numbers of strong read/write are less than
eventual reads/writes. Since writes do not differentiated into
strong or eventual, we combined all writes into one data set.

A. Write and Read performance
From the records, we calculate a latency for each read and

write. This is the time from sending request out until the value
or acknowledgement comes back. Table I. shows the statistics
for write latency and Fig. 2 shows the box plot. From the total
of 4,600 writes, the median of write latency is 56 milliseconds
while the mean is 114.4 seconds. The minimum write latency is
42 milliseconds and the maximum jumps to 2,391
milliseconds. The first quartile of write latency is 50 ms while
the 3rd quartile is at 103 ms. The range of the whisker is 1.5
inter-quartile (IQR) range, and the lower whisker is at 29.5 ms
and the upper whisker is at 182.5 ms. We did not plot outliers
but the number of outliers above the upper whisker is 430
which is around 9.35% while there is no outliers below the
lower whisker. It is clear that the write latency distribution is
right-skewed.

The statistics for both eventual consistent read latency and
strong consistent read latency are almost identical. They both
have a median of 16 ms with 9 ms minimum and 14 ms as 1st
quartile and 18 ms as 3rd quartile. The mean of eventual read
latency is 18.78 compared to 18.19 for strong consistent read.
The maximum of eventual read latency is 1,576 ms while it is
1,350 ms for strong consistent read. The whiskers of the box
plot also calculated using 1.5 * inter-quartile range, and they
are both at 8 ms for lower whiskers and 24 ms for upper

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

whiskers. Both reads do not have any outliers below the lower
whiskers, but 7.81% of eventual reads and 8.66% of strong
consistent reads took longer than 24 ms and are considered
outliers. The read latency distribution shows negligible
skewness.

TABLE I. STATISTICS OF READ AND WRITE LATENCIES

 Writes Eventual
Reads

Strong
Reads

n (obs.) 4,600 260,132 225,891

Min (ms) 42 9 9

Q1 (ms) 50 14 14

Median (ms) 56 16 16

Q3 (ms) 103 18 18

IQR (ms) 53 4 4

Max (ms) 2,391 1,576 1,350

Outliers (%) 9.35 7.81 8.66

Mean (ms) 114.4 18.78 18.19

SD (ms) 186.84 17.61 24.34

Fig. 1. Boxplot of write latency.

Fig. 2. Boxplot of strong and eventual read latencies.

TABLE II. STATISTICS OF READ AND WRITE THROUGHPUT

 Q1 Median Q3 IQR Mean SD
Eventual
Reads per sec 51 57 62 11 53.03 13.87

Strong Reads
per sec 51 57 62 11 54.45 16.07

Fig. 3. Boxplot of reads throughput.

B. Write and Read performace by hour
To evaluate read and write performance variations, we

grouped the results by each test run (roughly 1 hour apart) and
summarized latencies and throughput for each run. Table III.
shows read and write latency for selected runs and Fig. 4-7
show box plot of read and write latency of all runs. There are
two sets of write runs: one on the first day with eventual reads
(Fig. 4), the other on the second day with strong consistent
reads (Fig. 5). As noted, there were 22 runs only on the second
day because of errors in the writer.

TABLE III. WRITE AND READ LATENCY BY TEST RUN

 Run Q1 Median Q3 IQR Mean SD

Write
(first day)

7 48 51 53.3 5.3 69.21 144.91
11 50 206.5 407.8 357.8 343.40 365.38
17 126.5 136.5 150.2 23.7 207.50 212.96

Eventual
read

7 14 16 17 3 18.71 24.13
11 14 16 18 4 17.15 10.05
17 15 16 18 3 20.93 34.28

Write
(second
day)

7 49 52 56 7 77.82 144.51
11 50 59 271 221 255.4 350.52
16 141.8 167.5 188 46.2 211.20 188.37

Strong
read

7 13 15 17 4 15.8 7.49
11 17 21 26 9 26.48 23.45
16 14 16 18 4 17.76 10.25

From the plots, there were roughly 3 types of write
performance. First was a low latency, low IQR one that had a
median about 50 ms and inter-quartile range of less than 10 ms.
Most test runs exhibited this type of quick and reliable latency.
The second group had a high latency between 100 and 200 ms
but a relatively small IQR of 50 ms. This was a group that had
lower performance but still not too much variation. The
boxplot of this group also did not show much skewness. The

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

third group was a high variance one that had IQR around 100
ms or greater. A few of test runs displayed this performance
with extreme right skewness. Overall, the write performance
was highly uneven.

Fig. 4. Write latency by test run on the first day with eventual read.

Fig. 5. Write latency by test run (second day) with strong consistent read.

On the other hand, read performances of both strong and
eventual consistency remains stable during virtually all runs
with median less than 20 ms and IQR less than 10 ms. There
was only one single run than the median of read latency went
up to 21 ms. Fig. 6 and Fig. 7 shows eventual and strong
consistent read performance respectively. From these two
figures, it would be very difficult to differentiate eventual read
and strong consistent read from one another. There was one
anomaly in run number 11 in strong consistent read data. That
run was the same run where write latency IQR was almost 200
ms, so it may be an especially bad SimpleDB performance.

Fig. 6. Eventual read latency by test run.

Fig. 7. Strong consistent read latency by test run.

C. Read correctness
We want to analyze the probability of read returning the

latest write value with regards to the elapsed time between that
read and latest write. For each read, we determine the latest
write that happened before the read was initiated. The time
elapsed between the finish of latest write and the start of that
read was calculated. Basically we find how long the read was
requested after the latest write finished. We also note the
correctness of the read; that is whether the read value is the
same as the latest write value or not.

Next we grouped all reads by their elapsed time from latest
write into bins. Each bin covers a 10 milliseconds period. For
example, two reads with elapsed time from latest write of 52
ms and 57 ms belong to a same bin. Then we calculated the
ratio between correct reads and the total reads in each bin.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Fig. 8 shows the resulting correctness probability with
respect to elapsed time from latest write. Strong consistent
reads perform as advertised by Amazon and return the latest
write value 100% of the time in every elapsed time period. On
the other hand, eventual consistent reads return the latest value
around 30% of the time when elapsed time from latest write is
less than 500 ms. The correctness jumps to around 80% when
elapsed time is between 500 and 600 ms. Finally after 600 ms
the correctness of eventual reads is almost 100%.

Fig. 8. Probability of reading latest value for each read consistency model.

Please note that the result of this part of our experiment
confirms an earlier test done by [5] and verifies the claim by
Amazon that strong consistent reads will not return stale value
[4]. In addition, from the figure, it can be seen that there are
some observations that the elapsed time is negative. This is
because that read was initiated after a write began but before
the write finished (the read was requested in the middle of a
new write) AND the read received the value from the new
write. This behavior is entirely possible according to Amazon
[4]. Work done by [5] defined elapsed time differently than
ours so this problem may not happen with them. However,
since the number of observations with negative elapsed time is
around 1%, they have negligible effects on the result.

VI. DISCUSSIONS
From the analysis, it is clear that eventual and strong

consistent reads have the same performance. Each read
generally takes less than 24 milliseconds to complete, only 8%
of the reads may take longer. However, the worst read time can
goes up to one second range. Write time on the average is 3
times longer than read time but its variance is also greater.
Most writes will complete in 200 milliseconds but the worst
writes may take up to 2 seconds.

Throughput of the two types of read also shows similar
performance, with identical median, IQR and almost equal
mean. Please note that the throughput experiment was not as
thorough as it should have been. We cannot determine right
now whether the throughput achieved was limited by
SimpleDB or by the capability of the VM used. The
experiment showed similarity between eventual and strong
consistent read performance, but should not be used to gauge

the SimpleDB actual throughput. In the future we plan to
investigate this issue further.

When we breakdown write and read performance by test
run, where each test run was approximately 1 hour apart, it
becomes clear that write performance was highly unpredictable
with some runs that had median write latency in hundreds.
Comparing with read performance by test run which was much
more consistent with median around 20 ms in all runs. Looking
at read performance alone, it is very difficult to tell whether
write performance during the same run was good or bad.

Please also note that the start time of the experiment (start
of run number 1) on the two days were different. It is probably
pure co-incidence that bad write performance happened on run
11 on both days. (We checked and found that run 11 did not
occur during the same time of day on both days.) The data set
is also too few to make any analysis on performance pattern.

Another topic that we are going to discuss briefly is the cost
of operations. Amazon stated that the cost of reading and
writing to SimpleDB did not depend on the number of reads
and writes, but on "virtual CPU time" used to service those
operations. With only this information it is not clear how much
cost a web application will incur when using SimpleDB.
Amazon however provides cost explorer application that can
summarize cost by each API call. According to this
application, the cost of eventual read for the duration of the
experiment was $27.15. Since we issued 260,132 eventual read
requests, the cost comes to $0.1 per 1,000 request. We can only
reliably report the cost of eventual read, because there were
errors with strong consistent read and the experiment executed
longer than it should have been and write operations were too
few to be sure of cost of each write.

VII. CONCLUSION
This paper evaluate the performance of three APIs for

interfacing with Amazon SimpleDB, which are write, eventual
read, and strong consistent read. These APIs together provide
developers with either eventual or strong data consistency
model. From the results of our experiment, it is shown that the
latency and throughput of both read APIs were identical, even
though they guarantee consistency differently. The
performance of write API was about 3 times worse than reads
and had greater variations too.

Our work also confirmed an earlier work about consistency
in SimpleDB which showed that the probability of reading the
latest write value depends on the time since last write.

REFERENCES

[1] A. S. Tanenbaum and M. van Steen, "Distributed Systems: Principles
and Paradigms", Second Edition, Prentice Hall, 2006.

[2] Amazon Elastic Compute Cloud , retrieved from
http://aws.amazon.com/ec2

[3] Amazon SimpleDB, retrieved from http://aws.amazon.com/simpledb/
[4] Amazon SimpleDB Developer Guide, retrieved from

http://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/
ConsistencySummary.html

[5] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, "Data Consistency
Properties and the Tradeoffs in Commercial Cloud Storages: the

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Consumers’ Perspective", Proceeding of the 7th Conference on
Innovative Data Systems Research (CIDR), 2013.

[6] I. Fetai and H. Schuldt, "Cost-Based Data Consistency in a Data-as-a-
Service Cloud Environment", in Proceeding of the Fifth International
Conference on Cloud Computing, 2012.

[7] D.B. Terry et. al., "Consistency-Based Service Level Agreements for
Cloud Storage", in Proceeding of the ACM Symposium on Operating
Systems Principles", 2013.

[8] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Consistency
rationing in the cloud: pay only when it matters. Proceedings
International Conference on Very Large Data Bases (VLDB), August
2009.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

