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Abstract—Cloud platform providers usually offer several 
APIs (Application Program Interface) to help facilitate 
programmers to utilize cloud resources effectively by hiding 
complex cloud structures and mechanisms. However, there are 
some aspects of distributed computing that cannot be hidden. 
Depending on data consistency models, two or more clients may 
not see the same current state of the data. Developers should 
understand the performance of available APIs and consistency 
models they provide. This paper explores the performance of a 
suite of APIs that can be used to implement two different data 
consistency models in SimpleDB, a distributed non-relational 
database-as-a-service provided by Amazon. Based on our 
experiment, read requests in two consistency models offered by 
Amazon SimpleDB performed almost identically, with median 
latency of 16 ms. Write performance was about 3 times slower, 
with 56 ms median latency. In addition, there were greater 
performance variations for writes than reads. Lastly, a strong 
consistency model worked as advertised, returning latest value 
with every read. On the other hand, the correctness of an 
eventual consistency read depended primarily on the elapsed 
time since last write operation. 
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I.  INTRODUCTION 
Cloud development platforms such as Google App Engine 

or Amazon Web Services are becoming a mature technology 
for convenient and rapid application development and 
deployment on the Cloud. Platform-as-a-Service cloud 
providers create several tools and API (Application Program 
Interface) that helps developers use, monitor, and manage 
cloud resources programmatically. These APIs include reading 
and writing distributed non-relational database, creating and 
scaling the number of virtual machine instances, managing 
users of cloud resources, etc. 

While these APIs tremendously facilitate programmers to 
utilize cloud resources effectively by hiding complex cloud 
structures and mechanisms, there are some aspects of 
distributed computing that cannot be hidden. One of the issues 
that developers must understand is data consistency in 
distributed system [1]. Because information may be replicated 
in several data stores and updates may occur at any data store, 
two or more clients may not see the same current state of the 
data (depending on data consistency models). Cloud providers 
usually have APIs to implement some forms of data 
consistency, but it depends on each developer to choose an 
appropriate model (or a mix of models) for his application. 

Consistency is not the only concern when deciding on a 
consistency model. A software engineer must also take into 
account the performance of mechanisms used to implement 
different models, for example, the latency and throughput of 
read and write requests for each model. Performance variation 
may also be another factor to be considered; the developers 
may want an application that performs similarly every time 
rather than one that is very fast most of the time but may 
sometimes execute sluggishly. 

This paper explores the performance of a suite of APIs that 
can be used to implement two different data consistency 
models in SimpleDB, a distributed non-relational database-as-
a-service provided by Amazon. We also test the consistency 
models offered by SimpleDB to evaluate the correctness of 
data with respect to time after last write. In this way, a 
developer will have a complete information to judiciously 
make a trade-off between data consistency, acceptable 
inconsistent data probability, and performance. 

The paper is organized as follows. Section 2 discusses 
related work in the field. Section 3 explains the SimpleDB and 
available consistency models while Section 4 outlines out test 
programs and experiment setup. Section 5 shows test results 
and discussions follows in Section 6. Section 7 concludes the 
paper. 

II. RELATED WORK 
Data consistency model is an important issue in distributed 

computing. This topic is included in several text books 
regarding the issue, such as [1]. When cloud computing 
becomes popular, data consistency is considered to be a 
differentiating service for cloud platform providers, i.e., it 
could be an issue to be negotiated and included in SLA 
(service-level agreement) [7] or charged for extra service [6]. 

Performance measurement of operations that used to 
implement different data consistency models had been done in 
[5] and [8]. In [8] the authors developed an experiment system 
using Amazon S3 that could adapt consistency models during 
run time and measure its performance. Our work is similar to 
work in [5] which also measure performances of read and write 
operations in Amazon SimpleDB and Google Big Table, but 
we focus more on latency and its variation during a day. 
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III. SYSTEM MODEL 
In this section, we explain our experiment platforms which 

are Amazon EC2 and SimpleDB briefly. More importantly, the 
consistency models available to developers are discussed.  

A. Amazon EC2 and SimpleDB 
Amazon EC2 [2] is a cloud computing platform that 

provides virtual machine configuration, deployment, and 
management to customers. A user can choose VM capabilities 
(e.g. processing power and the amount of memory), an image 
to be used (which includes an operating system and/or other 
applications), and then deploy the VM in one of several regions 
around the world (e.g. East Coast North America, Asia-Pacific, 
or Europe). The user can then remotely access and manage the 
VM through the Internet. 

SimpleDB [3] is a type of non-relational distributed 
database-as-a-service provided by Amazon. A developer using 
SimpleDB does not have to administer the distributed database 
himself, he can just create a SimpleDB in one geographic 
region and read/write to it using provided APIs. Amazon will 
take care of data replication and distribution. 

B. Consistency Model in Amazon SimpleDB 
While Amazon can help developers manage the backend 

management of SimpleDB, programmers still need to 
understand consistency models available when working with a 
distributed database. Amazon provides two consistency models 
for retrieving data from SimpleDB: eventual and strong 
consistency. A strong consistent read (select and get from a 
database) will always retrieve the latest write from the 
database. On the other hand, an eventual consistent read may 
retrieve the latest value, or a stale value, or even a previously 
written value [4]. Amazon states that strong consistent reads 
potentially has a higher read latency and lower throughput 
comparing to eventual consistent reads. 

IV. EXPERIMENT 
The goal of our experiment is to evaluate the performance 

of SimpleDB in three operations: write, strong consistent read, 
and eventual consistent read. The experiment was also setup to 
evaluate the variation of SimpleDB performance during a day. 
We are also interested in the behavior and results of eventual 
consistent read to read the latest write data. 

A. Test Program 
We developed a simple web application that will repeatedly 

write and read data from a SimpleDB database. The database is 
a just a single integer attribute. The test program consists of 
two parts: a writer and a reader. When activated, a writer starts 
writing a number to SimpleDB. This number is kept at the 
writer and initially starts at 0. Every 2000 milliseconds, the 
writer increments the number by 1 and writes it to SimpleDB. 
The writer stops after writing number 99. The start time and 
finish time of each write are recorded. 

The reader starts execution after the first 2000 milliseconds 
has passed from when the writer starts. The reader repeatedly, 
and as fast as possible, reads a value from the SimpleDB 

database and records it along with the start time and finish time 
of each read. The reader can be configured to use either strong 
or eventual consistent read, and it will use the same method 
until it stops. The reader stops when it reads a value 99 or when 
five minutes has passed. Since the reader and the writer are 
located on the same machine, clock synchronization is not an 
issue in this test program. 

B. Experiment Setup 
The experiment was conducted during the two-day period 

in April 2015. A SimpleDB domain was created in the US 
North East Region of Amazon Web Services. An m1.small 
instance which has 1 virtual CPU and 1.7 GiB memory 
installed with Ubuntu 12.04 and Tomcat 7.0 with JDK 1.7 was 
initiated also in the US North East Region. The test program 
was deployed to the VM instance. 

During the first day, the reader was configured to use 
eventual consistent read. The test program was executed once 
every hour and the resulting performance and read records was 
saved. Then the reader was re-configured to use strong 
consistent read and the experiment repeated 24 times (once 
every hour) in the second day. 

V. RESULTS 
After the experiment concluded, we recorded 260,132 

eventual consistent reads together with 2,400 writes and 
225,801 strong consistent reads together with their 2,200 
writes. There were two executions of strong reads that 
produced errors and we discarded those recordings. This is the 
reason why the numbers of strong read/write are less than 
eventual reads/writes. Since writes do not differentiated into 
strong or eventual, we combined all writes into one data set. 

A. Write and Read performance 
From the records, we calculate a latency for each read and 

write. This is the time from sending request out until the value 
or acknowledgement comes back. Table I. shows the statistics 
for write latency and Fig. 2 shows the box plot. From the total 
of 4,600 writes, the median of write latency is 56 milliseconds 
while the mean is 114.4 seconds. The minimum write latency is 
42 milliseconds and the maximum jumps to 2,391 
milliseconds. The first quartile of write latency is 50 ms while 
the 3rd quartile is at 103 ms. The range of the whisker is 1.5 
inter-quartile (IQR) range, and the lower whisker is at 29.5 ms 
and the upper whisker is at 182.5 ms. We did not plot outliers 
but the number of outliers above the upper whisker is 430 
which is around 9.35% while there is no outliers below the 
lower whisker. It is clear that the write latency distribution is 
right-skewed. 

The statistics for both eventual consistent read latency and 
strong consistent read latency are almost identical. They both 
have a median of 16 ms with 9 ms minimum and 14 ms as 1st 
quartile and 18 ms as 3rd quartile. The mean of eventual read 
latency is 18.78 compared to 18.19 for strong consistent read. 
The maximum of eventual read latency is 1,576 ms while it is 
1,350 ms for strong consistent read. The whiskers of the box 
plot also calculated using 1.5 * inter-quartile range, and they 
are both at 8 ms for lower whiskers and 24 ms for upper 
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whiskers. Both reads do not have any outliers below the lower 
whiskers, but 7.81% of eventual reads and 8.66% of strong 
consistent reads took longer than 24 ms and are considered 
outliers. The read latency distribution shows negligible 
skewness. 

TABLE I.  STATISTICS OF READ AND WRITE LATENCIES 

 Writes Eventual 
Reads 

Strong 
Reads 

n (obs.) 4,600 260,132 225,891 

Min (ms) 42 9 9 

Q1 (ms) 50 14 14 

Median (ms) 56 16 16 

Q3 (ms) 103 18 18 

IQR (ms) 53 4 4 

Max (ms) 2,391 1,576 1,350 

Outliers (%) 9.35 7.81 8.66 

Mean (ms) 114.4 18.78 18.19 

SD (ms) 186.84 17.61 24.34 

 

 

Fig. 1. Boxplot of write latency. 

 

Fig. 2. Boxplot of strong and eventual read latencies. 

TABLE II.  STATISTICS OF READ AND WRITE THROUGHPUT 

 Q1 Median Q3 IQR Mean SD 
Eventual 
Reads per sec 51 57 62 11 53.03 13.87 

Strong Reads 
per sec 51 57 62 11 54.45 16.07 

 

 

Fig. 3. Boxplot of reads throughput. 

B. Write and Read performace by hour 
To evaluate read and write performance variations, we 

grouped the results by each test run (roughly 1 hour apart) and 
summarized latencies and throughput for each run. Table III. 
shows read and write latency for selected runs and Fig. 4-7 
show box plot of read and write latency of all runs. There are 
two sets of write runs: one on the first day with eventual reads 
(Fig. 4), the other on the second day with strong consistent 
reads (Fig. 5). As noted, there were 22 runs only on the second 
day because of errors in the writer.  

TABLE III.  WRITE AND READ LATENCY BY TEST RUN 

 Run Q1 Median Q3 IQR Mean SD 

Write 
(first day) 

7 48 51 53.3 5.3 69.21 144.91 
11 50 206.5 407.8 357.8 343.40 365.38 
17 126.5 136.5 150.2 23.7 207.50 212.96 

Eventual 
read 

7 14 16 17 3 18.71 24.13 
11 14 16 18 4 17.15 10.05 
17 15 16 18 3 20.93 34.28 

Write 
(second 
day) 

7 49 52 56 7 77.82 144.51 
11 50 59 271 221 255.4 350.52 
16 141.8 167.5 188 46.2 211.20 188.37 

Strong 
read 

7 13 15 17 4 15.8 7.49 
11 17 21 26 9 26.48 23.45 
16 14 16 18 4 17.76 10.25 

 

From the plots, there were roughly 3 types of write 
performance. First was a low latency, low IQR one that had a 
median about 50 ms and inter-quartile range of less than 10 ms. 
Most test runs exhibited this type of quick and reliable latency. 
The second group had a high latency between 100 and 200 ms 
but a relatively small IQR of 50 ms. This was a group that had 
lower performance but still not too much variation. The 
boxplot of this group also did not show much skewness. The 
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third group was a high variance one that had IQR around 100 
ms or greater. A few of test runs displayed this performance 
with extreme right skewness. Overall, the write performance 
was highly uneven. 

 
Fig. 4. Write latency by test run on the first day with eventual read. 

 
Fig. 5. Write latency by test run (second day) with strong consistent read. 

On the other hand, read performances of both strong and 
eventual consistency remains stable during virtually all runs 
with median less than 20 ms and IQR less than 10 ms. There 
was only one single run than the median of read latency went 
up to 21 ms. Fig. 6 and Fig. 7 shows eventual and strong 
consistent read performance respectively. From these two 
figures, it would be very difficult to differentiate eventual read 
and strong consistent read from one another. There was one 
anomaly in run number 11 in strong consistent read data. That 
run was the same run where write latency IQR was almost 200 
ms, so it may be an especially bad SimpleDB performance. 

 

Fig. 6. Eventual read latency by test run. 

 

Fig. 7. Strong consistent read latency by test run. 

C. Read correctness 
We want to analyze the probability of read returning the 

latest write value with regards to the elapsed time between that 
read and latest write. For each read, we determine the latest 
write that happened before the read was initiated. The time 
elapsed between the finish of latest write and the start of that 
read was calculated. Basically we find how long the read was 
requested after the latest write finished. We also note the 
correctness of the read; that is whether the read value is the 
same as the latest write value or not. 

Next we grouped all reads by their elapsed time from latest 
write into bins. Each bin covers a 10 milliseconds period. For 
example, two reads with elapsed time from latest write of 52 
ms and 57 ms belong to a same bin. Then we calculated the 
ratio between correct reads and the total reads in each bin. 
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Fig. 8 shows the resulting correctness probability with 
respect to elapsed time from latest write. Strong consistent 
reads perform as advertised by Amazon and return the latest 
write value 100% of the time in every elapsed time period. On 
the other hand, eventual consistent reads return the latest value 
around 30% of the time when elapsed time from latest write is 
less than 500 ms. The correctness jumps to around 80% when 
elapsed time is between 500 and 600 ms. Finally after 600 ms 
the correctness of eventual reads is almost 100%. 

 

Fig. 8. Probability of reading latest value for each read consistency model. 

Please note that the result of this part of our experiment 
confirms an earlier test done by [5] and verifies the claim by 
Amazon that strong consistent reads will not return stale value 
[4]. In addition, from the figure, it can be seen that there are 
some observations that the elapsed time is negative. This is 
because that read was initiated after a write began but before 
the write finished (the read was requested in the middle of a 
new write) AND the read received the value from the new 
write. This behavior is entirely possible according to Amazon 
[4]. Work done by [5] defined elapsed time differently than 
ours so this problem may not happen with them. However, 
since the number of observations with negative elapsed time is 
around 1%, they have negligible effects on the result. 

VI. DISCUSSIONS 
From the analysis, it is clear that eventual and strong 

consistent reads have the same performance. Each read 
generally takes less than 24 milliseconds to complete, only 8% 
of the reads may take longer. However, the worst read time can 
goes up to one second range. Write time on the average is 3 
times longer than read time but its variance is also greater. 
Most writes will complete in 200 milliseconds but the worst 
writes may take up to 2 seconds. 

Throughput of the two types of read also shows similar 
performance, with identical median, IQR and almost equal 
mean. Please note that the throughput experiment was not as 
thorough as it should have been. We cannot determine right 
now whether the throughput achieved was limited by 
SimpleDB or by the capability of the VM used. The 
experiment showed similarity between eventual and strong 
consistent read performance, but should not be used to gauge 

the SimpleDB actual throughput. In the future we plan to 
investigate this issue further. 

When we breakdown write and read performance by test 
run, where each test run was approximately 1 hour apart, it 
becomes clear that write performance was highly unpredictable 
with some runs that had median write latency in hundreds. 
Comparing with read performance by test run which was much 
more consistent with median around 20 ms in all runs. Looking 
at read performance alone, it is very difficult to tell whether 
write performance during the same run was good or bad. 

Please also note that the start time of the experiment (start 
of run number 1) on the two days were different. It is probably 
pure co-incidence that bad write performance happened on run 
11 on both days. (We checked and found that run 11 did not 
occur during the same time of day on both days.) The data set 
is also too few to make any analysis on performance pattern. 

Another topic that we are going to discuss briefly is the cost 
of operations. Amazon stated that the cost of reading and 
writing to SimpleDB did not depend on the number of reads 
and writes, but on "virtual CPU time" used to service those 
operations. With only this information it is not clear how much 
cost a web application will incur when using SimpleDB. 
Amazon however provides cost explorer application that can 
summarize cost by each API call. According to this 
application, the cost of eventual read for the duration of the 
experiment was $27.15. Since we issued 260,132 eventual read 
requests, the cost comes to $0.1 per 1,000 request. We can only 
reliably report the cost of eventual read, because there were 
errors with strong consistent read and the experiment executed 
longer than it should have been and write operations were too 
few to be sure of cost of each write. 

VII. CONCLUSION 
This paper evaluate the performance of three APIs for 

interfacing with Amazon SimpleDB, which are write, eventual 
read, and strong consistent read. These APIs together provide 
developers with either eventual or strong data consistency 
model. From the results of our experiment, it is shown that the 
latency and throughput of both read APIs were identical, even 
though they guarantee consistency differently. The 
performance of write API was about 3 times worse than reads 
and had greater variations too. 

Our work also confirmed an earlier work about consistency 
in SimpleDB which showed that the probability of reading the 
latest write value depends on the time since last write. 
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