
Training Set Size Reduction
in Large Dataset Problems

Varin Chouvatut*, Wattana Jindaluang and Ekkarat Boonchieng
The Theoretical and Empirical Research Group

Center of Excellence in Community Health Informatics
Department of Computer Science

Faculty of Science, Chiang Mai University
Chiang Mai, Thailand

varinchouv@gmail.com (*corresponding author), wjindaluang@gmail.com, ekkarat@boonchieng.net

Abstract—Classifiers have known to be used in various fields
of applications. However, the main problem usually found
recently is about applying a classifier to large datasets. Thus, the
process of reducing size of the training set becomes necessary
especially to accelerate the processing time of the classifier.
Concerning the problem, this paper proposes a new method
which can reduce size of the training set in a large dataset. Our
proposed method is improved from a famous graph-based
algorithm named Optimum-Path Forest (OPF). Our principal
concept of reducing the training set’s size is to utilize the
Segmented Least Square Algorithm (SLSA) in estimating the
tree’s shape. From the experimental results, our proposed
method could reduce size of the training set by about 7 to 21
percent comparing with the original OPF algorithm while the
classification’s accuracy decreased insignificantly by only about
0.2 to 0.5 percent. In addition, for some datasets, our method
provided even as same degree of accuracy as of the original OPF
algorithm.

Keywords—Optimum-Path Forest ; Training Set Size
Reduction; Graph-based Classification Algorothm; Supervised
Learning

I. INTRODUCTION
Recently, information of interest to be analyzed are often of

a large size, for example, there are usually millions of pixels
involved in the field of image processing, there can be millions
of users or clients connecting to a computer network, a hospital
always has hundreds of thousands of patients each of which
can have hundreds of attributes to be recorded, etc. What we
need to consider in data analysis is not only about the accuracy
obtained from a classifier, but also the speed or processing time
of the classifier, especially, in a real-time application where
processing time of algorithm used is more vital than its
accuracy.

Graph-based classification algorithm generally works by
representing the interesting data with vertices and the
relationships to be compared among the data with edges of a
graph in the sample feature space. With this representation,
every pair of vertices in the graph is connected by a sole edge
whose weight is defined using the Euclidian distance between
them. In this way, the generated graph is thus called a complete
graph.

A lot of researches used graph-based classification as in [1]
where the researchers proposed a classifier with Supervised
Lazy Random Walk. Their results showed that their method
gave high degree of accuracy and still worked well with noise-
added data. Another famous research of graph-based classifier
is OPF which is demonstrated by researchers of [2] that the
OPF algorithm has several advantages which include (i) the
algorithm is free from parameters, (ii) the process of training
phase has no classification errors, (iii) the algorithm does not
pose the over-fitting problem, and (iv) the algorithm can be
used in problems of multi-class data (additional concepts of
OPF are explained in Section II). Afterwards, there were
several researches based on OPF such as [3-5]. Researchers in
[3] studied a robust set of pattern classifiers based on OPF.
From their experiments, their method could tolerate noises and
also could cope with overlapping classes. Additionally, they
claimed that their method worked better than a well-known
classifier, Support Vector Machines (SVMs). In [4],
researchers revised the original OPF by altering (i) the cost
function in paths, for example, fmax or fmin, (ii) methodology of
adjacency relation such as complete graph or k-nn, and (iii)
methodology of prototype estimation such as Minimum
Spanning Tree (MST) or maxima regions of the data feature
space. The researchers compared their method with SVM and
Artificial Neural Networks using Multilayer Perceptrons
(ANN-MLP). Comparing results showed that their method
suited a huge dataset while its accuracy might be higher or
lower than SVM, depending on the data in question. However,
their method always gave higher accuracy than ANN-MLP.
Also, they claimed that their method processed rapidly, had
straightforward implementation, could cope with multi-class
datasets, and required no assumption of class shapes. Later,
researchers of [5] extended the OPF algorithm to a k-Optimum
Path Forest (k-OPF) algorithm and compared the new
algorithm with a number of popular classification algorithms
including k-Nearest Neighbors (k-NN), SVM, and Decision
Tree (DT). Their experiments showed that the k-OPF algorithm
provided as same degrees of accuracy and decision boundaries
as k-NN algorithm when using all samples as Prototypes but
the k-OPF algorithm gave results differed from SVM and DT.
The researchers found that their k-OPF processed more rapidly
than the k-NN and they also proved that k-OPF and k-NN
algorithms have the same error bounds.

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Apart from that, the OPF algorithm was applied in many
kinds of applications such as in [6] and [7]. In [6], the
algorithm was applied with an IRIS database. From their
experiments, processing time and accuracy were compared
amongst using OPF algorithm, Hamming classifier, and
Bayesian classifier. The researchers found that Hamming
classifier gave the highest accuracy but also consumed the
longest running time whereas OPF algorithm and Bayesian
classifier gave similar accuracy but OPF processed faster than
Bayesian for about 385 times. As well, the OPF algorithm was
applied in analysis of electrocardiogram (ECG) signals [7]. The
experimental results demonstrated the robust performance of
the OPF algorithm and also showed that OPF gave better
running time and higher accuracy comparing to SVM and
MLP.

In this paper, we proposes a new supervised learning
approach for accelerating a classifier by reducing size of the
training set. The proposed classification method is an
improvement on OPF algorithm. The improved classification
approach can speed up classifiers with insignificant degree of a
drop in accuracy from the original classification.

Contents are separately explained in sections. An overview
of OPF algorithm is explained in Section II. Our proposed
approach is described in Section III. Experimental setup and
results are shown in Section IV. Lastly, our conclusion is
presented in Section V.

II. OVERVIEW OF OPF ALGORITHM
OPF algorithm is a graph-based classifier whose process

may be divided into 2 phases, training and testing. The training
phase is to select Prototypes out of a training set where
selecting a Prototype can be done by finding a MST. Then,
Prototypes and the training set will be combined to create a
forest using the OPF algorithm. Next, the testing phase will use
the forest created from the training phase to predict class of the
new coming data. Let Z = {x1, x2, …,xn} be a training set with
the size of n and Y = {y1, y2, …, yn} be class labels where yi is
the class label for data xi, an xi will have m features, saying xi =
{fi1, fi2, …,fim}. The distance between any pair of different
points is computed using the Euclidean distance. The two
phases of the OPF algorithm are explained more in details as
follows.

A. Training Phase
It is well-known that the training phase starts from selecting

Prototypes. At this phase, a complete graph will be generated
from all data items of a training set. Each edge in the graph will
be weighed by the distance between its pair of points. Then, a
MST for the graph can be created by either Kruskal or Prim
method. The Prototypes will be selected from vertices which
are end points of edges in MST connecting data from different
classes. Next step is to combine the selected Prototypes with
the rest data of the training set in order to be trained with the
OPF algorithm.

In [3], researchers used fmax to be the path-cost function
defined in Eq. (1).








=

∈

∈

∈

 v. toSs from

path a is P where}{weight(e)max

S, vif0

(v)f Pemax (1)

B. Testing Phase
Testing phase is to predict class of the new coming data

items which can be done by creating edges from the new
coming data items to all existing data items in the training set
in a forest. And each newly created edge’s weight will be set
by the distance between the new data item and the existing data
item being connected from the training set.

Given xnew = (f1, f2, …,fm) be a new coming data item, the
OPF algorithm can compute the cost from xnew to all Prototypes
using the function fmax as displayed in Eq. (2).

Z.s allfor)}} xd(s, s),min{max{C()C(x newnew ∈= (2)

Given s*∈Z be the data item given minimum value of
C(xnew), the OPF algorithm will predict the class of xnew as
same as of s*.

Additional details of this OPF algorithm such as its
Pseudocodes or examples may be found in [2-3] and [5].

III. PROPOSED APPROACH
 As explained in Section II, in the testing phase, we need to
compute the distance from the new data item to all existing
data items in the training set; so if we want to accelerate the
classifiers, we need to reduce size of the training set. In this
paper, we thus proposed a new method which can be used to
reduce the set’s size. Our method can be considered as an
improved OPF algorithm, that is, we used the forest generated
from the traditional OPF algorithm then reduced its size before
sending it as input to the testing phase. Consequently, the
output from our method is a training set with smaller size than
usual. After that, the smaller training set will be sent further to
the testing phase to predict class of a new data item as usual.

 For the purpose of size reduction, we cannot just remove a
subset of data items from the training set directly. Doing so,
shape of the tree may be distorted resulting in classification’s
accuracy drop. Our purpose of reducing size of the training set
is thus to reduce the size whereas the classification’s accuracy
drops only slightly. To achieve the objective, we thus use
Segmented Least Square Algorithm (SLSA) to estimate shape
of the tree obtained from the training phase of the OPF
algorithm. Without loss of generality, we assumed that the
forest resulted from the OPF algorithm contains only one tree.
If the algorithm returned a forest of more than one tree, each
tree will be manipulated one by one.

 The Segmented Least Square (SLS) problem is a
minimization problem in which a set of points is given and
then lines best fit for all of the points need to be searched. One
method provided a trivial solution is to create a line connecting
each pair of contiguous points together, this way all points will
be fitted perfectly. It is unfortunate that in the real-world
application we cannot doing so since cost penalty must be paid

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

for each line addition. Definition of the SLS problem was
explained in [8] that given a set of n points, P = {p1 = (x1, y1),
p2 = (x2, y2), …, pn = (xn, yn)} such that x1 < x2 < … < xn, we
need to divide set P into segments each of which represents an
interval of the points, that is, S = {pi, pi+1, …,pj} for some i ≤ j.
For each segment S, we then compute a best-fit line whose
efficiency is measured using Eq. (3).

∑
=

=
j toi k

2
kkij)y -)(f(xe . (3)

Finding a solution for the SLS problem may be done by
dynamic programming technique whose key concept for this
problem is a recurrence in Eq. (4).





=

>++
≤≤=

1.j;1

1,j;}1)-OPT(iCije{ji1min
OPT(j) (4)

where OPT(j) is the optimal solution for the point interval from
p1 to pj, eij is the minimum error in line fitting of the segment S
= {pi, pi+1, …, pj}, and C is the (user-defined) penalty paid for
each line addition. So finding a solution for the SLS problem is
to calculate the OPT(n) where the base case, OPT(0), is set to
0.

Here, we used SLSA to estimate the tree’s shape. Firstly,
the tree obtained from the OPF algorithm would be partitioned
into branches. Next, shape estimation for each branch in the
tree would be done by SLSA. From line estimation fitted by the
SLSA, a new set of points along each fitting line together with
their new cost would then be redefined. Finally, all newly
estimated branches would be assembled back to reform the
tree. Fig.1 shows an example resulted from the explained
method for estimating a new tree using SLSA.

(a) The tree output from OPF algorithm.

(b) The tree partitioned into five branches.

(c) Two line segments estimated by SLSA manipulating on the 5th branch of
(b).

(d) The 1st line segment with points from (c) whose distance from end (Head)
to end (Tail) is assumed to be 10.

(e) The line segment from (d) with newly defined points and their cost.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

(f) The newly estimated tree to be used as the training set with smaller size.

Fig. 1. An example result of newly estimated tree from the proposed method.

 From Fig. 1(f), the number of points in the newly
estimated tree to be used as the training set is obviously less
than the original tree, Fig. 1(a), obtained from the OPF
algorithm whereas the tree’s shape remains similarly. This
demonstrated that our proposed method can reduce size of the
training set while the classification’s accuray drops only
slightly.

IV. EXPERIMENTAL SETTINGS AND RESULTS
 We compared our proposed method with the traditional
OPF algorithm on five datasets retrieved from UCI [9] and
Machine Learning Data Set Repository [10] databases, in terms
of size of the training set and accuracy from classification.
Characteristics of the datasets are given in Table I.

TABLE I. DATASET CHARACTERISTICS

Dataset Name Dataset
Size

The Number
of Features

The Number
of Classes

Banana 05,300 02 02
E. coli 00,336 07 08
Ionosphere 00,351 34 02
Letter Recognition (LR) 20,000 16 26
Sonar 00,208 60 02

As we noted that the penalty paid for each line addition, C,
in Eq. (4) is a user-defined parameter, thus, we experimented
with three value settings of C for 0.125, 0.25, and 0.5,
respectively. For the minimum error, eij, calculated from Eq.
(3), each feature of the data was normalized to be between 0
and 1. To evaluate the performance of the two methods (the
traditional OPF and the proposed method), five-fold cross
validation has been used. Comparisons with respect to different
C’s (the penalty) of the classification’s accuracy and the
training set’s size between our proposed method and the
traditional OPF algorithm are as Tables II - IV. Note that, due
to the five-fold cross validation, size of a training set is its
average size.

For C equal to 0.125 in Table II, the classification’s
accuracy obtained from our proposed method decreases
insignificantly, i.e. for 0.51, 0.37, and 0.24 percent in the
datasets named Banana, E. coli, and Letter Recognition (LR),
respectively. For the datasets Ionosphere and Sonar, the
accuracy obtained from both our method and the traditional
OPF algorithm is the same. In addition, sizes of the training
sets are reduced by 21.71, 7.44, 6.98, 12.89, and 9.13 percent

in datasets Banana, E. coli, Ionosphere, LR, and Sonar,
respectively using our method.

TABLE II. ACCURACY OF CLASSIFICATION AND TRAINING SET SIZE FOR
C EQUAL TO 0.125

Dataset Name Traditional OPF Proposed Method
 Accuracy Training set

size
Accuracy Training set

size
Banana 70.08 04,240.0 69.72 03,316.4
E. coli 76.69 00,268.8 76.40 00,248.8
Ionosphere 84.33 00,280.8 84.33 00,261.2
LR 95.09 16,000.0 94.86 13,937.4
Sonar 61.48 00,166.4 61.48 00,151.2

TABLE III. ACCURACY OF CLASSIFICATION AND TRAINING SET SIZE FOR
C EQUAL TO 0.25

Dataset Name Traditional OPF Proposed Method
 Accuracy Training set

size
Accuracy Training set

size
Banana 70.08 04,240.0 69.72 03,316.2
E. coli 76.69 00,268.8 76.40 00,248.0
Ionosphere 84.33 00,280.8 84.33 00,261.0
LR 95.09 16,000.0 94.88 13,936.2
Sonar 61.48 00,166.4 61.48 00,150.8

 As shown in Table III with C equal to 0.25, our method
reduces accuracy of the classification by only 0.51, 0.37, and
0.22 percent in datasets Banana, E. coli, and LR, respectively
whereas the accuracy remains the same as of the traditional
OPF algorithm for the datasets Ionosphere and Sonar.
Accuracy values obtained from setting C to 0.25 shown in
Table III are very similar to those obtained from setting C to
0.125 shown in Table II. With C equal to 0.25, sizes of the
training sets are reduced by 21.79, 7.44, 7.05, 12.89, and 9.13
percent in datasets Banana, E. coli, Ionosphere, LR, and Sonar,
respectively.

TABLE IV. ACCURACY OF CLASSIFICATION AND TRAINING SET SIZE FOR
C EQUAL TO 0.5

Dataset Name Traditional OPF Proposed Method
 Accuracy Training set

size
Accuracy Training set

size
Banana 70.08 4240.0 69.72 3316.2
E. coli 76.69 268.8 76.40 248.0
Ionosphere 84.33 280.8 84.33 261.0
LR 95.09 16000.0 94.86 13936.2
Sonar 61.48 166.4 61.48 150.8

 Table IV with C equal to 0.5 demonstrates that our method
still provides good performance of the classification for
datasets Ionosphere and Sonar whereas accuracy values of the
classification for the rest datasets decrease for just small
amounts, which are 0.51, 0.37, and 0.25 percent for Banana, E.
coli, and LR, respectively. The training sets for datasets
Banana, E. coli, Ionosphere, LR, and Sonar use smaller sizes
by 21.82, 7.74, 7.34, 12.90, and 9.62 percent, respectively than
usual.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

V. CONCLUSION
Our paper proposes a new method aiming to reduce time

consumption of a classifier by reducing size of the training set
in a large dataset problem. To reduce the training set’s size,
SLSA is used to estimate shape of a tree generated from the
training phase of OPF algorithm. The training set with reduced
size obtained from the shape-estimated tree is thus sent to the
testing phase in order to predict class of the new input data.
Our experiments showed that sizes of the training sets were
reduced by 7 - 21 percent comparing with the traditional OPF
algorithm. Also, the classification’s accuracy remains the same
as of the traditional algorithm or decreases (if any) with an
insignificant degree. Lastly, a higher penalty paid, C, gave a
smaller size of the training set.

REFERENCES
[1] L. Lu, X. Xu, P. He, Y. Ma, Q. Chen and L. Chen, “Supervised Lazy

Random Walk calssifier”, 10th Web Information System and Application
Conference (WISA), Yanzhou, China, 2013.

[2] J.P. Papa, A.X. Falcao, C.T. Suzuki and N.D. Mascarenhas, “A discrete
approach for supervised pattern recognition”, IWCIA 2008, LNCS 4958
Springer Heidelberg, pp: 136 – 147.

[3] J.P. Papa, A.X. Falcao, P.A. Miranda, C.T. Suzuki and N.D.
Mascarenhas, “Design of robust pattern callsifiers based on Optimum-
path Forests”, 8th International Symposium on Mathematical
Morphology, Rio de Janeiro, Brazil, 2007.

[4] J.P. Papa and A.X. Falcao, “Optimum-Path Forest: a novel and powerful
framework for supervised graph-based pattern recognition techniques”,
Congresso da SociedadeBresileire de Computacao, Bento Goncalves,
2009.

[5] R. Souza, L. Rittner and R. Lotufo, “A comparision between k-Optimum
Path Forest and k-Nerest Neighbors supvervise classifiers”, Pattern
Recognition Lets. 39 (2014):2 – 10.

[6] L.C. Afonso, J.P. Papa, A.N. Marana, A. Poursaberi and S.N.
Yanushkevich, “A fast large scale iris database classification with
Optimum-Path Forest technique”, International Joint Conference on
Neural Networks (IJCNN), Brisbane, Australia, 2012.

[7] E.J. Luz, T.M. Nunes, V.H. Albuquerque, J.P. Papa and D. Menotti,
“ECG arrhythmia classification based on Optimum-Path Forest”, Expert
Systems with Applications 40(2013):3561 – 3573.

[8] J. Kleinberg and E. Tardos, Algorithm Design. Person Addision Wesley,
Boston, 2006.

[9] UCI Database, https://archive.ics.uci.edu/ml/datasets.html (searched in
Jul. 2014).

[10] Machine Learning Data Set Repository,
http://mldata.org/repository/data/ (searched in Jul. 2014).

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

