
Incremental Session Based Collaborative Filtering
with Forgetting Mechanisms

Ureerat Suksawatchon⇤, Sumet Darapisut † and Jakkarin Suksawatchon‡
Faculty of Informatics, Burapha University

Chonburi, 20131 Thailand
⇤ureerat.w@gmail.com, †dearsumet@gmail.com, ‡jakkarin@informatics.buu.ac.th

Abstract—Most of research works in music recommendation
systems use Collaborative Filtering (CF) for generating person-
alized recommendations based on user’s previous song ratings
or static usage history data. But those researches adapting CF
do not consider behavior of listening to songs and are not able
to maintain the systems to sensitive to recent user’s preferences.
Behavior of music listening is continuous and repetitive process,
especially, the latest song listening can infer to the favorite
song at that moment. In this work, we present Incremental

Session based Collaborative Filtering with forgetting mechanism or
ISSCF by adapting Session-based Collaborative Filtering (SSCF),
which considers music listened continuously and maintains the
recent session. In order to avoid unnecessary memory usage and
processing time, we use forgetting mechanism: sliding windows
and fading factors incorporating with SSCF. We evaluate our
purposed framework by measuring the HitRatio. From ex-
perimental results, it shows that performance of our purposed
approach increases the accuracy of recommendation and low
computational time and space when comparing with than SSCF.

Keywords—music recommendation; forgetting mechanism; ses-

sion; collaborative filtering

I. INTRODUCTION

Music Recommender System (MRS) has an important
role to help the users to find songs that they really want
from a large amount of songs. In provider aspect, MRS is
able to filter and to choose appropriated music for the users.
Most of MRS uses Collaborative Filtering algorithm (CF) for
generating personalized recommended songs by considering
users behaviors (such as rating, clicks, history and purchase,
etc.) [1], [2], [3], [4]. However, CF requires many users and
many ratings and is unable to recommend songs that have a
few ratings. This means that users have to well provide their
taste if they need effective recommendation.

Characteristic of music domain has different from other
domains like movies, books and news. Listening to music
is continuous and repetitive process. Especially, users tend
to prefer to listen to preference songs repetitively in session
rather than isolated [4], [5]. Accordance with S. E. Park and
et al.[5] tries to capture order and repetitiveness in the playing
songs. They proposed Session-based Collaborative Filtering
approach (SSCF) for next song prediction with the currently
played songs in Bugs Music dataset. SSCF adapt collaborative
filtering based on user by taking into account relation of
session profiles instead of user profiles. The experiments show

that SSCF outperforms than traditional collaborative filtering
in term of accuracy.

R. Dias and M. Fonseca [6] presented improving music
recommendation approach named Temporal Session based
Collaborative Filtering approach (TSSCF). This work extracts
temporal context including time of day, weekday, a day of
month, a month from session profiles, and takes into account
the song diversity played in the session. After that, the TSSCF
groups sessions according to different of temporal context by
using Gaussian Mixture Model via Expectation Maximization
algorithm. Finally, the part of recommendation approach is
applied with SSCF. Comparing with the traditional session-
based CF, the TSSCF can achieve better accuracy values.

However, SSCF and TSSCF approaches are still based
on traditional user-based CF. It uses the fully static listening
history of users to perform recommendation and requires very
expensive computational time and space with the growth of
the number of users and music in a database. Thus, both
SSCF and TSSCF approaches are not appropriate for on-line
manner because the on-line music service always increases
new users and new songs. These two algorithms are faced
with the scalability problem. This causes the system to become
less predictive ability. In order to overcome this problem, we
introduce Incremental Session based Collaborative Filtering
with forgetting mechanisms or ISSCF ,in short; by modifi-
cations in SSCF [5]. Our approach is capable to accurately
recommend the next songs for the active session by considering
past sessions in on-line manner. Because of increasing new
users and new songs, our approach uses forgetting mechanisms
to handle old and obsolete data, and maintain the MRS con-
cerning to recent data. It is possible to reduce memory usage
and processing time as well. In this paper, we evaluate the
efficiency of two forgetting mechanisms – sliding windows and
fading factors. In our experiments, we evaluate the accuracy
of our purposed algorithm with the HitRatio (HR@n)[5],
[6], and also evaluate the time-consuming of our model by
comparing with SSCF. The results are shown that our purposed
algorithm outperforms in terms of accuracy and computational
time.

II. BACKGROUND KNOWLEDGE

A. Collaborative Filtering Algorithm (CF)

Collaborative filtering (CF) is the well-known personalized
recommendation technique that widely used in recommender
system. The basic idea of CF is to help users to find the

978-1-4673-7825-3/15/$31.00 © 2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

items they would like to purchase based on rating of those
items by other users with similar taste. CF produces a
prediction score or top-N recommendation list of items
for an active user. More formally, there are a set of
users U = {u1, u2, . . . , ui, . . . , uN} and a set of items
M = {m1,m2, . . . ,mj , . . . ,mK}. Each user has rated a
subset of items such as movie, music, book and etc. All
available ratings (rui,mj) are collected in user-item rating
matrix denoted R matrix as illustrated in Fig 1. In the first
step, it finds similarity between active users ui and users uv

having co-rated as Mi \Mv . The popular similarity measures
are cosine similarity and Pearson correlation similarity as
given in (1) and (2). Next, the k most similar users are
selected as the k-nearest neighbors of active user. Then, CF
calculates the prediction rating (pui,mj) that active user (ui)
would probably prefer item (mj) based on his/her neighbors
using (3). Finally, the top-N recommendation list is generated
based on highest prediction scores [2], [7].

25
uN 1

...

mK

5

ru ,mi K

... mj

3

ru ,mi j

... m1

ru ,mi 1

2

 ui

...

 u1

Fig. 1. The example of user-song rating matrix

Cosine similarity :

sim (ui, uv) =

X

j2Mi\Mv

(rui,mj , ruv,mj)

s X

j2Mi\Mv

(rui,mj)
2
s X

j2Mi\Mv

(ruv,mj)
2

(1)
Pearson correlation similarity :

sim (ui, uv) =X

j2Mi\Mv

�
rui,mj � rui,·

� �
ruv,mj � ruv,·

�

s X

j2Mi\Mv

�
rui,mj � rui,·

�2
s X

j2Mi\Mv

�
ruv,mj � ruv,·

�2

(2)

pui,mj = rui,· +

P
uv2U sim (ui, uv)

⇥
ruv,mj � ruv,·

⇤
P

uv2U |sim (ui, uv)|
(3)

B. Incremental Collaborative Filtering Algorithms

M. Papagelis and et al. [8] presented Incremental Collab-
orative Filtering (ICF) for handling scalability problem. ICF
is based on incremental updates of the user-user similarities.
When active user submits a new rating or updates existing
rating then similarity between active user and the rest of need

to be recalculated in relation to the old similarity values. ICF
approach illustrates that it can reduce computation complexity
from polynomial time to linear time that gives higher potential
than classic CF. C. Miranda and A. M. Jorge [9] proposed
the incremental version of item-based CF for binary ratings
that regards recommendation approach based on item instead
of user. This approach shows that it uses less computational
cost and gives predictive accuracy more than user-based CF.
In addition, X. Yang and et al. [10] developed scalable item-
based collaborative filtering. To deal with scalability problem,
incremental update of item-to-item similarity is proposed. In
rating prediction process, local link prediction in item simi-
larity graph is used to find implicit neighbor candidates. The
experimental results validate that this approach can increase
the efficiency in recommendation. Besides, CF should be able
to efficiently process data online in order to keep the system
up-to-date [11]. J. Vinagre and A. M. Jorge [11] proposed
incremental collaborative filtering with forgetting mechanisms
approach that maintains recent preference of user. It decreases
older importance information with sliding windows and fading
factors approaches. The experimental results show that this
approach is able to reduce processing time and memory while
not significant reducing predictive potentiality of the algorithm.

Although all of these algorithms mentioned before are
designed to handle the scalability problem, actually it cannot
improve the accuracy of the recommendation system. Because
these algorithms consider only user-rating matrix or item-
rating matrix and do not take into account behavior of listening
to songs or characteristics of songs as the additional informa-
tion. Moreover, listening to music is continuous session and
repetitive process [4], [5], [6]. All of those algorithms do not
concern about listening behavior. This will lead to increase the
accuracy of the recommendation systems.

III. OUR APPROACH

The framework of ISSCF system (our proposed system) is
described in Fig. 2.

Music Dataset

A. Session Generation
based on Listening Behavior

Active user

Feedback

Recommend

C. Incremental Update
Session-Music Matrix

using Forgetting mechanisms

B. Session Based CF

Finding Similar Sessions

Calculating k-Nearest
Sessions

 Active Session Prediction

Top-N recommended songs
in Active session

New session

m2m1m3 m5 ...

Top-N
songs

Fig. 2. Overall our approach

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

A. Session Generation based on Listening Behavior

In this work, we use listening dataset from last.fm1

database as shown in Fig. 3 that collected during 2005 to May
2009. When a user listens to song, one log in database is
generated. Last.fm dataset contains 6,741,330 listening logs
obtained from 582 users and 613,117 songs. Each user is
analyzed the song diversity by using diversity measuring as
shown in (4). This song diversity measures the ratio of different
songs played in a session and the total songs played [6]. If song
diversity value is closed to 1, it can inform that a user played
different songs. Otherwise, this value can inform that a user
played repeatedly the same songs. In this dataset, the average
of song diversity is 0.21. This means that most of users listened
to music repeatedly and continuously.

Contest
a Moy

Moy Or
Less

Music
id

Alice

...

2009-01-01
T09:00:10Z

...

2009-01-01
T09:07:47Z

2009-01-01
T09:04:40Z Don Moy

art1

...

Pogo

Don Moy

Artist
id

...

Timestamp

m3

...

Music
id

user1

Artist

...

User
id

m2

m1

user1

art1

art3

user1

Fig. 3. The example of listening log data obtained from Last.fm

Song diversity =
#Different songs

#All songs
(4)

Since our framework is a modification of SSCF (Algorithm
1) [5] designed for on-line handling of on-line music services.
First, we define a session as the group of songs listened by
a user from the moment he/she starts playing songs to the
moment they stop it [5]. This work uses continuous time gap
of stopping playing songs more than 30 minutes to define as a
session. In initial process, we create 100 sessions for a single
user to avoid cold start problem as depicted in Fig. 4. Sessions
containing less than 2 songs are removed [5], [6].

Contest
a Moy

Moy Or
Less

Music
id

Alice

...

2009-01-01T
09:00:10Z

...

2009-01-01T
09:07:47Z

2009-01-01T
09:04:40Z Don Moy

art1

...

Pogo

Don Moy

Artist
id

...

Timestamp

m3

...

Music
id

user1

Artist

...

User
id

m2

m1

user1

art1

art3

user1

Active session

m1 m2 m1 m4m1

Session 1 Session 2

...

Current

m3m1m2 m4 ...

Timeline
User1

Fig. 4. The example of session generation

1http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/

Algorithm 1 Traditional SSCF
1: Input : D,N, k
2: Output : Top N recommended songs
3: Create session-music matrix Met with set of sessions ss

✏ music datasets D
4: Calculate similarity matrix with Met by using cosine

similarity
5: For each session ssu :
6: For each session ssv :
7: For each song mj by j = Mssu\Mssv :
8: sim (ssu, ssv) =

P
j (rssu,mj ,rssv,mj)qP

j (rssu,mj)
2
qP

j (rssv,mj)
2

9: Finding k similar session (Sk)
10: Prediction score of song mj

11: For each song mj with active session as :

12: pas,mj = ras +
P

ssv2Sk sim(as,ssv)[rssv,mj�rssv]P
ssv2Sk |sim(as,ssv)|

13: Recommend the top-N songs (Nrec) based on highest
prediction scores

B. Session Based CF

Since this work considers session profiles instead of user
profiles for generating recommendation, Session-Music matrix
is generated for each user as illustrated in Fig. 5. Based on this
data matrix rows represent session profiles, and the columns
represent songs. Each cell contains the frequency of songs
played in that session. In this process, we concentrate on the
prediction of next appropriated songs that user requests in the
active session (current session). Thus, our approach ranks all
candidate songs and recommend top-n songs that are likely to
come after songs that are listening to.

m3

-

-

42

m2

1

-

m1

1

2

1

ss3

ss2

ss1

3

m4

-

1

............ ...

...

...

...

...

...

ss

ss100 1 - 1 ...1

Active session
(AS)

m1 m2 m1 m4m1

Session 1
(SS1)

Session 2
(SS2)

...

Current

m3m1m2 m4 ...

Timeline
User1

Fig. 5. The example of Session-Music Matrix for a single user

The first step of this process, we find similar sessions by
measuring the similarity between an active session (as) and
other sessions (ssv). To measure the similarity between active
session (as) and other sessions (ssv) denoted as sim (as, ssv),
we use cosine similarity [5] as shown in (5), where rating
(ras,mj) is the frequency of listening to song (mj) in active
session (as) and rating (rssv,mj) is the frequency of listen to
song (mj) in the session ssv .

sim (as, ssv) =

P
j (ras,mj , rssv,mj)qP

j (ras,mj)
2
qP

j (rssv,mj)
2

(5)

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Next, we calculate the k-nearest neighbors is applied to
find other sessions which are k most similarity to the active
session. Then, the prediction score of song mj in active session
as, defined as (pas,mj), is determined with k session neighbors
(Sk) as shown in (6). Finally, all candidate songs are ranked
and recommend top-n songs playing in the active session.

pas,mj = ras +

P
ssv2Sk sim (as, ssv)

⇥
rssv,mj � rssv

⇤
P

ssv2Sk |sim (as, ssv)|
(6)

C. Incremental Update Session using Forgetting Mechanisms

Whenever a user listened to songs from the moment he/she
starts playing songs to the moment he/she stops it, and the
stopping time of playing songs is more than 30 minutes, a new
session emerges as to be feedback from a user. Incremental
process has been presented, where our approach incremen-
tally updates Session-Music matrix every time new session
is available. In order to maintain recent preference of user,
it should be decreased older and obsolete sessions. This work
uses forgetting mechanisms to re-update Session-Music matrix.
Forgetting mechanisms used in this work are sliding windows
and fading factors approaches.

1) Sliding windows: The sliding windows approach is
performed using a sequence-based sliding window of size sw
that holds information about sw most recent sessions in type
of first-in-first-out (FIFO) data structure[11]. In this approach,
we process by fixed size of most recent sessions. When an
incoming new session is added and sw is reached to fixed
window size, then oldest session of the user is discarded as
shown in Fig. 6. Then, the similarity value corresponding to
songs in new session are updated, while other values are kept.
Algorithm ISSCF with sliding windows is shown in Algorithm
2.

Add new
session

Remove
oldest session

...

...

...

ss1

...

m4

2

1

...

-1

m3

-

ss100

m2

...

1

...m1

ss3 ...

......

4

2

-

ss2

2

...

-

4

-

31

...

... ...

2

...-

...

...

...

2New ss 3

-

sw

Fig. 6. Sliding windows approach.

2) Fading factors: Since sliding windows provide an ef-
fective but abrupt way to forget older data. However, in many
cases previous data may contain valuable information and is
not necessarily discarded [11]. Fading factors provide another
way to gradually forget past data. The fading factors approach
is gradual forgetting or full memory approach [12] that uses
all sessions of matrix, but decreases importance of old session
with small weight as shown in Fig. 7. This approach can be
implemented by multiplying the elements of matrix for each
session by a factor w using formula (7). Algorithm ISSCF with
fading factors is shown in Algorithm 3.

w = e�↵t (7)

Algorithm 2 ISSCF with sliding windows
1: Input : D,N, k, sw
2: Output : Top N recommended songs
3: Initialize session-music matrix Met with set of session

S={ss1, ..., ss100} by S ✏ music datasets D
4: For each new active session as ✏ D:
5: Hidden last song (mhide) of as as test data
6: Update matrix Met with as
7: If length(Met) > size of window sw then

8: Remove oldest session (Metss1)
9: Update session and music (row/column) of Met

10: (Re)calculate similarity matrix with Met by using
cosine similarity

11: For each session ssv with as in Met :
12: For each song mj by j = Mas\Mssv :
13: Calculate equation (5)
14: Finding k similar session (Sk)
15: Prediction score of song mj

16: For each song mj with active session as :
17: Calculate equation (6)
18: Recommend the top-N songs (Nrec) based on highest

prediction scores

New ss 3 - ...21

...4*w 2*wss100 2*w-

...

...

...

...

...

m4

-

-

3*w

m3

-

-

4*w2*w

m2

1*w

-

m1

1*w

2*w

1*w

ss3

ss2

ss1

Fig. 7. Fading factors approach

where, w : weight value
↵ : controlling factor to define how fast the weights decrease
t : session order

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

In the experimental process, we would like to know that
whether our framework could predict the next song to be
played in the current active session based on what user has
previously listened in that session. This work removes the last
songs to be played in the queried current active session as
testing datum [6] as shown in Fig 8. One important test is
how to deal with a large amount of data and perform in on-line
manner. We consider user sessions as a data stream. From the
analysis of last.fm data, there are 564 sessions. These sessions
are divided into 100 sessions to be used as initial sessions
and 464 sessions to be used as the queried active sessions
(testing data) that will continuously feed into system. Then,
testing data is executed by our framework (ISSCF) and SSCF
algorithm [5] to obtain the top-10 recommendations.

The following parameters are set to conduct the tests. For
sliding windows, we set window size (sw) in form of the
number of sessions at 200 and 400 latest sessions. For fading
factors, we set the weight values (alpha) of exponential time

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Algorithm 3 ISSCF with fading factors
1: Input : D,N, k,↵
2: Output : Top N recommended songs
3: Initialize session-music matrix Met with set of session

S={ss1, ..., ss100} by S ✏ music datasets D
4: For each new active session as ✏ D
5: Hidden last song (mhide) of as as test data
6: Update matrix Met with as
7: Assigns weight (w) with factor ↵, session order (t) :
8: Calculate equation (7)
9: (Re)calculate similarity matrix with Met by using

cosine similarity
10: For each session ssv with as in Met :
11: For each song mj by j = Mas\Mssv :
12: Calculate equation (5)
13: Finding k similar session (Sk)
14: Prediction score of song mj

15: For each song mj with active session as :
16: Calculate equation (6)
17: Recommend the top-N songs (Nrec) based on highest

prediction scores

m3 m1m4 m2

Queried Active Session

Next song Prediction

m2m1

m3 m1m4 ?

Queried Active Session

Next song Prediction

m2m1

Fig. 8. Evaluation approach in the next song prediction

decay function as controlling how fast the weights decrease
at 0.1 and 0.01. The both ISSCF and SSCF approaches use
cosine similarity and 30 best neighbor sessions as suggested
in [6]. In addition, this work has tested the computational time
of ISSCF and SSCF approaches in finding similarity process
and prediction process at 10 runs and 200 of the consecutive
queried active sessions.

B. Evaluation Metric

In evaluation process, we measure the accuracy of our
framework and other methods using HitRatio (HR@n) [5].
HR@n indicates that whether the desired songs appear on the
top-n recommendation lists for a single user in the queried
active session, and how many times they appear [6]. HR@n
metric is described in formula (8).

HR@n =
#hit

k
(8)

The average HR@n for one session in all users can be
calculated as shown in (9).

HitRatio =

PN
i=1 HR@n

N
(9)

Where, hit : if music is listened in the next song appear
on recommendation list, so hit is 1 otherwise is 0.

k : the number of hidden songs
N : the number of users

C. Results and Discussions

The result as depicted in Fig 9 shows the HitRatio of
ISSCF with sliding window at sw = 200 and sw = 400 and
compared with SSCF for each queried active session of all
users. From experimental results, ISSCF with sliding window
at sw = 200 got the average HitRatio at 0.085 and at
sw = 400 got the average HitRatio at 0.089. For SSCF
approach, the average HitRatio is 0.088. Fig 10 shows the
HitRatio ISSCF with fading factors in each queried active
session compared with SSCF. The average of HitRatio at
↵ = 0.01 is 0.11 and ↵ = 0.1 is 0.1146. We have conducted
Wilcoxon Tests at p� value = 0.1 between ISSCF and SSCF
for 50 queried active sessions. We conclude that there was no
statistically significant difference between ISSCF with sliding
windows and SSCF. Although there was no difference between
ISSCF and SSCF, but ISSCF can reduce the computational
time that will discuss next. Comparing between ISSCF with
fading factors and SSCF, there was a statistically significant. It
is clear that ISSCF with fading factors shows a good accuracy
than SSCF.

Fig. 11 shows the best result in each algorithms. ISSCF
with fading factors at ↵ = 0.1 still gives the best average
HitRatio than ISSCF with sliding windows and SSCF. We can
conclude that ISSCF with fading factor is capable to increase
significantly the accuracy of the recommendations.

100 150 200 250 300 350 400 450 500 550 6000.04

0.06

0.08

0.1

0.12

#session

H
itR
at
io

SSCF
SW=400
SW=200

Fig. 9. The HitRatio of ISSCF with sliding windows compared with SSCF

100 150 200 250 300 350 400 450 500 550 6000

0.05

0.1

0.15

0.2

#session

H
itR

at
io

SSCF
α = 0.1
α = 0.01

Fig. 10. The HitRatio of ISSCF with fading factors compare with SSCF

This work also evaluated the computational efficient of
ISSCF with SSCF. Since SSCF is the algorithm based CF,
so it uses the quadratic time, especially, for finding similarity
between whole sessions and songs in offline process and uses
more time for prediction process. Table I shows the execution
time used in those three algorithms at 200 sessions. Time was
measured on a PC with CPU speed at 3.20 GHz, 8 GB RAM,

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Fig. 11. The average of HitRatio value of SSCF, ISSCF with sw = 400,
and ISSCF with ↵ = 0.1 for all users in all sessions

100 150 200 250 300 350 400 450 500 550 6000

0.5

1

1.5

#session

Ti
m

e(
s)

prediction SW=400
prediction α =0.1
similarity SW=400
similarity α =0.1

Fig. 12. The execution time of finding session similarity and active session
prediction processes of ISSCF

and all algorithms were implemented in Python. The traditional
SSCF approach uses O(m2n) to find similarity (Algorithm 1
lines 5-8) and if we know the session of active user, so time
of prediction is O(n) (Algorithm 1 lines 11-12).

For ISSCF approach, it has to find similarity sessions when
latest session of active user is updated. This process uses com-
putational time that is O(mn) (Algorithm 2 lines 11-13 and
Algorithm 3 lines 10-12), where m is the number of sessions
and n is the number of songs in that session. In process of
active session prediction, it uses O(n) (Algorithm 2 lines
16-17 and Algorithm 3 lines 15-16). That is appropriate for
recommendation systems and helps computational reduction.
According to Fig. 12 shows the growth of execution times of
finding session similarity process and active session prediction
process of ISSCF. The ISSCF with sliding windows presents
very efficiency over ISSCF with fading factors approach, hence
ISSCF with sliding windows uses the fixed size of windows
(sessions). On the other hand, ISSCF with fading factors
approach does not discard data. It will affect to computational
time that grows with number of sessions in linear time.

TABLE I. EXECUTION TIME OF TWO APPROACHES

Approach Similarity Prediciton
Offline SSCF 10.16 sec. 0.02 sec.
ISSCF 0.09 sec. 0.02 sec.

V. CONCLUSION

Since Session-based Collaborative Filtering (SSCF) re-
quires expensive computations that grow polynomially because
of increasing in the number of users and songs, and SSCF
is not capable to process data in on-line manner in order

to maintain the system up-to-date. Therefore, this paper pro-
poses Incremental Session based Collaborative Filtering with
Forgetting Mechanism called ISSCF. It is a new framework
that modified in tradition SSCF incorporated with forgetting
mechanism. Our approach is suitable for the music domain
by taking into account the users listen to songs continuously
and repetition in a session. Thus, our purpose is to improve
the accurately recommendation for the next songs in active
session and to overcome the scalability problem in on-line
manner. For supporting on-line process, we adapt incremental
algorithm to SSCF by using forgetting mechanisms — sliding
windows and fading factors — to deal with old and obsolete
data. In our experiments, we evaluate the accuracy of our
purposed algorithm compared with SSCF by using HitRatio
(HR@n) metric [5], [6], and also evaluate the time-consuming
of our model comparing with SSCF. The results are shown that
our purposed framework outperforms in terms of accuracy and
computational time.

ACKNOWLEDGEMENTS

This research is supported by Faculty of Informatics,
Burapha University.

REFERENCES

[1] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,”
ACM Comput. Surv., vol. 47, no. 1, pp. 3:1–3:45, May 2014.

[2] M. Kaminskas and F. Ricci, “Contextual music information retrieval and
recommendation: State of the art and challenges,” Computer Science
Review, vol. 6, no. 23, pp. 89 – 119, 2012.

[3] Y. Song, S. Dixon, and M. Pearce, “A survey of music recommendation
systems and future perspectives,” pp. 395–410, Jul. 2012.

[4] C. H. Park and M. Kahng, “Temporal dynamics in music listening
behavior: A case study of online music service,” in Computer and Infor-
mation Science (ICIS), 2010 IEEE/ACIS 9th International Conference
on, Aug 2010, pp. 573–578.

[5] S. E. Park, S. Lee, and S. goo Lee, “Session-based collaborative
filtering for predicting the next song,” in Computers, Networks, Systems
and Industrial Engineering (CNSI), 2011 First ACIS/JNU International
Conference on, 2011, pp. 353–358.

[6] R. Dias and M. Fonseca, “Improving music recommendation in session-
based collaborative filtering by using temporal context,” in Tools with
Artificial Intelligence (ICTAI), 2013 IEEE 25th International Confer-
ence on, Nov 2013, pp. 783–788.

[7] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems
Handbook, 1st ed., New York, NY, USA, 2010.

[8] M. Papagelis, I. Rousidis, D. Plexousakis, and E. Theoharopoulos,
“Incremental collaborative filtering for highly-scalable recommendation
algorithms,” in Proceedings of the 15th International Conference on
Foundations of Intelligent Systems, ser. ISMIS’05, 2005, pp. 553–561.

[9] C. Miranda and A. Jorge, “Incremental collaborative filtering for binary
ratings,” in Web Intelligence and Intelligent Agent Technology, 2008.
WI-IAT ’08. IEEE/WIC/ACM International Conference on, vol. 1, Dec
2008, pp. 389–392.

[10] X. Yang, Z. Zhang, and K. Wang, “Scalable collaborative filtering using
incremental update and local link prediction,” in Proceedings of the
21st ACM International Conference on Information and Knowledge
Management, ser. CIKM ’12, 2012, pp. 2371–2374.

[11] J. Vinagre and A. Jorge, “Forgetting mechanisms for scalable collab-
orative filtering,” Journal of the Brazilian Computer Society, vol. 18,
no. 4, pp. 271–282, 2012.

[12] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia,
“A survey on concept drift adaptation,” ACM Comput. Surv., vol. 46,
no. 4, pp. 44:1–44:37, 2014.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

