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Abstract—Given a set of n entities to be classified, and a matric
of dissimilarities between pairs of them. This paper considers
the problem called MINIMUM SUM OF DIAMETERS CLUSTERING
PROBLEM, where a partition of the set of entities into k clusters
such that the sum of the diameters of these clusters is minimized.
Brucker showed that the complexity of the problem is NP-hard,
when k ≥ 3 [1]. For the case of k = 2, Hansen and Jaumard
gave an O(n3 logn) algorithm [2], which Ramnath later improved
the running time to O(n3) [3]. This paper discusses the parallel
complexity of the MINIMUM SUM OF DIAMETERS CLUSTERING
PROBLEM. For the case of k = 2, we show that the problem
in parallel in fact belongs in class NC.1 In particular, we show
that the parallel complexity of the problem is O(logn) parallel
time and n7 processors on the COMMON CRCW PRAM model.
Additionally, we propose the parallel algorithmic technique which
can be applied to improve the processor bound by a factor of
n. As a result, we show that the problem can be quickly solved
in O(logn) parallel time using n6 processors on the COMMON
CRCW PRAM model. In addition, regarding the issue of high
processor complexity, we also propose a more practical NC
algorithm which can be implemented in O(log3 n) parallel time
using n3.376 processors on the EREW PRAM model.

Keywords—parallel complexity, PRAM algorithm, clustering,
minimum sum of diameters, application in social networking

I. INTRODUCTION

Clustering is a well-known and well-studied problem.
Applications in clustering are known in a wide variety of
areas such as data mining, machine learning, image processing,
bioinformatics, and social networking. Conceptually, a cluster
is a collection of similar entities, where entities within the
same cluster are more similar to each other than to those in
different clusters. A basic problem of clustering is to partition
a given finite set of n entities into k clusters according to
the criteria of similarity defined for clusters in the partition.
The type of clustering as one desires is application dependent.
However, the clustering criteria are most often based on two
fundamental notions of analysis—homogeneous and/or well-
separated classes [4], [5]. The concepts of seperation and
homogeneity can be made precise in several ways.

Commonly, a measure used in characterizing seperation is
assumed by the dissimilarity between entities. Homogeneity of
a cluster is often characterized by the diameter of the cluster
[6], which is defined as the maximum dissimilarity between

1Class of problems for which a polylogarithmic time parallel algorithm with
polynomial processor complexity is known.

any pair of entities in that cluster. Minimum diameter clustering
is the problem to determine a partition such that the maximum
diameter of its clusters’ diameters is minimized. A variation
of the problem considering a partition in which the sum of
its clusters’ diameters is minimized is called minimum sum of
diameters clustering.

Minimum diameter and minimum sum of diameters clus-
terings are of interest in many situations, where homogeneity
is the main concern in the analysis. However, previous studies
suggested that minimum diameter clustering suffers from the
dissection effect [1], [7], [6], [8], as is known as very similar
entities may be assigned to very different clusters. The cause
of this effect is found as minimum diameter clustering is likely
to require clusters to have fairly equal diameters, and a natural
cluster could get split for this reason. In the case of minimum
sum of diameters clustering, the dissection effect is usually
much less damaging, since no such equalizing factor is at play
when the sum of diameters is considered.

Complexity of minimum sum of diameters clustering has
been studied. All concentrated on the sequential aspect. In
[1], Brucker showed that the problem is NP-hard, where
k ≥ 3. For the case of k = 2, Hansen and Jaumard gave
an O(n3 log n) algorithm [2], which Ramnath later improved
the running time to O(n3) [3]. Emphasize that though the case
of two clusters is quite restrictive, it appears that in practice
a bipartitioning algorithm can also be recursively applied to
approximate a partitioning into three or more clusters [2]. This
technique is also known as divisive hierarchical clustering,
which perhaps is one of the most popular topics that has been
studied extensively in clustering literature [9].

This paper considers minimum sum of diameters clustering
from the parallel perspective. Our work presented here is
motivated by a number of existing applications of cluster-
ing in social networking in which a system is expected to
deal with massive data set provided by users in real-time.
Grouping/matching users based on similarities of temporal
information are relevant examples of such applications. For
large systems of social networking, it is commonly found
that many efficient sequential algorithms have failed in real
situations. Hence, from a theoretical point of view, parallel
algorithms are of interest for substantial improvements in time
serving such systems.

This paper discusses the parallel complexity of minimum
sum of diameters clustering, for the case of k = 2, where
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the clustering is defined as the optimization problem called
MINIMUM SUM OF DIAMETERS CLUSTERING PROBLEM.
Our results reveals that the problem in parallel in fact belongs
in class NC. More details on parallel complexity class NC
can be found in [10]. In particular, we show that the parallel
complexity of the problem is O(log n) parallel time and n7

processors on the COMMON CRCW PRAM model. Addition-
ally, we propose the parallel algorithmic technique which can
be applied to improve the processor bound by a factor of n.
As a result, we show that the problem can be quickly solved in
O(log n) parallel time using n6 processors on the COMMON
CRCW PRAM model. In addition, regarding the issue of high
processor complexity, we also propose a more practical NC
algorithm which can be implemented in O(log3 n) parallel
time using n3.376 processors on the EREW PRAM model.

The rest of this paper is organized as follows: section II
introduces notations and preliminaries. Section III discusses
the parallel complexity of MINIMUM SUM OF DIAMETERS
CLUSTERING PROBLEM. Section IV describes the parallel
algorithmic technique for the processor improvement. A more
practical NC algorithm is given in section V. Finally, we give
the conclusion and dicuss our work in section VI.

II. NOTATIONS AND PRELIMINARIES

This section introduces some notations and preliminaries
related to the minimum sum of diameters clustering. The
parallel model of computation used in this paper is described.

A. Notations and Definitions

Throughout this paper, let S = {1, 2, . . . , n} denote the
finit set of n entities. We assume dissimilarities between pairs
of entities in the set S be given by a distance metric d :
S2 → {0}∪R+. A dissimilarity between entities i and j in S,
denoted by dij , satisfies the conditions dii = 0, and dij = dji,
for all 1 ≤ i, j ≤ n. A family P = {C1, C2, . . . , Ck} of k
subsets of S is called a partition of S into k clusters if for
all 1 ≤ i, j ≤ k, Ci 6= ∅, Ci ∩ Cj = ∅, and C1 ∪ C2 ∪ · · · ∪
Ck = S. For a cluster C ⊆ S, the largest dissimilarity between
entities in C defines the diameter of the cluster C, denoted
by d(C), where d(C) = maxi,j∈C{dij}. The optimization
problem called MINIMUM SUM OF DIAMETERS CLUSTERING
PROBLEM (MSDCP) is defined as follows.

MINIMUM SUM OF DIAMETERS CLUSTERING PROBLEM
(MSCDP)
Given: A tuple (S, d) and integer k ≤ n.
Problem: Determine a partition P = {C1, C2, . . . , Ck} of S
such that d(C1) + d(C2) + · · ·+ d(Ck) is minimized.

This paper discusses the parallel complexity of the MS-
DCP. Throughout this paper, we assume k = 2, and without
loss of generality, d(C1) ≥ d(C2) .

B. The Parallel Model of Computation

The model of parallel computation in our discussion in this
paper is called the Parallel Random Access Machine (PRAM).
The basic PRAM model is a machine consisting of a collection
of infinite number of RAM processors and a collection of
infinite number of shared memory cells in which multiple
accesses to these cells by two or more processors are allowed.

Inputs and outputs to the computation are placed in shared
memory to allow the concurrent access. There are quite a
few variations of this parallel machine. However, most of our
complexity results are based on the Common Concurrent Read
Concurrent Write PRAM (COMMON CRCW PRAM) model,
which permits the simultaneous reads, and the simultaneous
writes succeed only if all processors try to write the same
value. And our more practical parallal algorithm are based on
the Exclusive Read Exclusive Write PRAM (EREW PRAM)
model, which only one processor can read and write to a
memory cell at any time. More information on the PRAM
model and its variations can be found in [10], [11].

III. MSDCP’S PARALLEL COMPLEXITY

This section discusses the parallel complexity of the MS-
DCP, showing that the problem can be quickly solved in
O(log n) parallel time using n7 processors on the COMMON
CRCW PRAM model. Essentially, the parallel complexity of
the MSDCP in our discussion is based on that of the decision
problem called POSSIBLE PAIR OF DIAMETERS PROBLEM
(PPDP). Formally, the problem is defined as follows.

POSSIBLE PAIR OF DIAMETERS PROBLEM (PPDP)
Given: A tuple (S, d) and a pair of dissimilarities (d1, d2),
with d1 ≥ d2.
Problem: Is there a bipartition P = {C1, C2} of S such that
d(C1) ≤ d1 and d(C2) ≤ d2?

Intuitively, the PPDP as MSDCP’s subroutine verifies
whether the given pair (d1, d2) is possible to be the clusters’
diameters. For a given MSCDP instance, the optimal pair of
diameters (d(C1), d(C2)) can be found among all of PPDP
YES-instances in which d1 + d2 minimized.

We first provide the generic parallel complexity of the
MSCDP by the parallel complexity of PPDP, and then show
the parallel complexity of PPDP. Subsequently, the parallel
complexity of the MSDCP is shown.

A. MSDCP’s Generic Parallel Complexity

Let t(n) and p(n) denote the parallel time and processor
complexities of the PPDP, and m(n) the number of necessary
instances of the PPDP in order to solve the MSDCP. The
generic parallel complexity of the MSCDP is as follows.

Theorem 3.1 (MSDCP’s Generic Parallel Complexity). For
some q(n) = O(m(n)), the parallel time complexity of the
MSDCP is O(m(n)

q(n) (t(n) + log (q(n)))), while the processor
complexity is p(n)q(n).

Proof: The MSDCP can be solved in two phases. The
first phase simultaneously solves m(n) PPDP instances using
p(n)q(n) processors in O(m(n)

q(n) t(n)) parallel time. The second
phase uses p(n) processors determining which YES-instance
has d1 +d2 minimized in O(m(n)

q(n) log (q(n))) parallel time.

B. PPDP’s Parallel Complexity

Next, we discuss the parallel complexity of the PPDP,
showing that the problem can be solved in O(log n) parallel
time using n3 processors on the COMMON CRCW PRAM
model. Basically, our solving technique relies on the parallel
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transformation that constructs a 2-SATISFIABILITY (2SAT)
instance with clauses in implicative form from a given PPDP
instance.

Lemma 3.2 (PPDP-2SAT Transformation). Given a PPDP
instance, the corresponding 2SAT instance can be constructed
in Θ(1) parallel time using n2 on a COMMON CRCW PRAM.

Proof: The transformation associates a boolean varible
ul to each entity l ∈ S such that ul is true if and only if
l ∈ C1, and constructs 2SAT implication clauses according to
two conditions found for the dissimilarity dij .

case 1: If d1 < dij , then construct (ūi → uj), (ūj → ui),
(ui → ūj) and (uj → ūi).

case 2: If d2 < dij ≤ d1, then construct (ūi → uj) and
(ūj → ui).

The construction can be performed in Θ(1) parallel time
using n2 by assigning each processor to each dissimilarity dij ,
for all 1 ≤ i, j ≤ n.

Aspvall, Plass and Tarjan [12] showed that a 2SAT instance
with a set U = {u1, u2, . . . , un} of n variables, and a
collection C = {(x1 → y1), (x2 → y2), . . . , (xm → ym)}
of implication clauses can be represented by an implication
graph. Basically, an implication graph is a directed graph
G = (V,E), where V = {ui, ūi|1 ≤ i ≤ n} and E =
{(xj , yj)|1 ≤ j ≤ m}. A 2SAT instance is satisfiable if and
only if there is no variable ui such that there exists a cycle
containing both ui and ūi in G, for all 1 ≤ i ≤ n. Observe
that one way to compute a 2SAT instance is by computing
transitive closure of G.

Theorem 3.3 (PPDP’s Parallel Complexity). The PPDP can
be computed in O(log n) parallel time using n3 processors on
a COMMON CRCW PRAM.

Proof: We apply the transformation by Lemma 3.2 to
construct the corresponding 2SAT instance with O(n2) impli-
cation clauses. Observe that the construction of the implication
graph can be done in Θ(1) parallel time using n2 processors.
We apply a parallel transitive closure algorithm in O(log n)
parallel time using n3 processors.

Remark that the optimal bipartition for the MSDCP can
be constructed directly from the satisfying truth assignment
for the corresponding 2SAT instance. We can incorporate with
a parallel algorithm on the COMMON CRCW PRAM model
for finding the satisfying truth assignment in O(log n) parallel
time using n3 processors by Chen [13] into the bipartition
construction. Note that the same parallel algorithm can be
simulated on the EREW PRAM model in O(log2 n) parallel
time using n3 processors.

C. MSDCP’s Parallel Complexity

Observe that the optimal pair of diameters (d(C1), d(C2))
for MSCDP can be found among O(n4) trivial PPDP in-
stances all of which is generated by trying O(n2) all possible
dissimilarities between d1 and d2. Applying PPDP Theorem
3.3, we obtain the parallel complexity of the MSDCP as
follows.

Theorem 3.4 (MSDCP’s Parallel Complexity). The MSDCP
can be computed in O(log n) parallel time using n7 processors
on a COMMON CRCW PRAM.

Proof: This result is by applying m(n) = O(n4) and
q(n) = n4 in the generic parallel complexity of the MSDCP.
The functions t(n) and p(n) follows the parallel complexity
of the PPDP in Theorem 3.3.

We would like to remark that though the result in Theorem
3.4 places the MSDCP in class NC. However, n7 processors
used in the computation are considered generally impractical.
Any NC algorithm with less processor complexity for the MS-
DCP would be a more appropiate parallel approach towards
the real world applications. In the next section, we will propose
the technique of parallel algorithm which can be applied to
reduce the processor complexity to n6.

IV. PROCESSOR IMPROVEMENT TECHNIQUE

This section presents the technique of parallel algorithm
that can be applied to any MSDCP instance to reduce the
number of PPDP instances required in solving the MSDCP.
As a result, we show that the technique can improve the
processor complexity in Theorem 3.4 by a factor of n. In-
tuitively, this technique is based on the result of Hansen and
Jaumard [2], which implies that there can be only at most
n possible disimilarities for d(C1) according to the structure
of a Kruskal’s maximum spanning tree (MST) of a complete
graph KS = (S, S2) with d as its weight function. Here, we
generalize Hansen and Jaumard’s result, extending the result
in a more restricted case, which only holds for a Kruskal’s
MST, to any MST in general case. Let T denote any MST
of a complete graph KS . This result is as follows.

Lemma 4.1 (Possible Larger Candidate Diameters). The edges
whose weights are candidate diameters for d(C1) are a max-
imum weighted edge (u, v) ∈ E(KS) \ E(T ) that closes an
odd cycle in T , and all the edges e ∈ E(T ) with duv ≤ de.

Proof: Consider an edge (u, v) of maximum weight
among the edges not in E(T ). Let Puv denote a path (a subset
of edges) from u to v in T . The edge (u, v) can either be the
edge that closes a cycle of odd or even length in T .

Suppose the edge (u, v) closes an odd cycle in T . Then,
duv ≤ de, for all edges e ∈ Puv . Otherwise, T is not maximum
(cycle property). Suppose to the contrary that d(C1) < duv .
Then, vertices along path Puv including edge (u, v) should
alternatively belong in the different clusters, but this is impos-
sible because |Puv ∪ (u, v)| is odd.

Suppose the edge (u, v) closes an even cycle in T . Again,
by cycle property, duv ≤ de, for all edges e ∈ Puv ⊆ E(T ).
Suppose that d(C1) = duv . Then, vertices u and v must belong
in the same cluster. Because |Puv∪(u, v)| is even, at least two
end vertices of one edge of Puv must be in the same cluster
too. It follows that d(C1) ≥ duv .

By Lemma 4.1, the lower bound on possible larger candi-
date diameters is the weight of a maximum weighted edge
(u, v) that closes an odd cycle in T . We formulate the
computational problem called LOWER BOUND ON LARGER
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CANDIDATE DIAMETER PROBLEM (LLCDP) aiming at de-
termining the edge (u, v). Formally, the problem is defined as
follows.

LOWER BOUND ON LARGER CANDIDATE DIAMETER
PROBLEM (LLCDP)
Given: A complete graph KS , a weight function d, and a
MST T of KS .
Problem: Determine an edge (u, v) ∈ E(KS) \ E(T ) of
maximum weight such that (u, v) closes an odd cycle in T .

For a given MSDCP instance, the corresponding LLCDP
instance can be constructed using a parallel MST algorithm
in O(log n) parallel time using n2 processors on the EREW
PRAM model [14]. Note that the construction on the COM-
MON CRCW PRAM model can also be done with the same
resource complexities.

We first introduce the parallel computation of the LLCDP.
Then, we describe how to incorporate with the parallel com-
putation to compute all possible larger candidate diameters.
Subsequently, the improved bound is presented.

A. LLCDP’s Parallel Computation

We discuss the parallel computation of the LLCDP, show-
ing that the LLCDP can be computed in O(log n) parallel time
using n3 processors on the COMMON CRCW PRAM model.
Basically, we solve the LLCDP in three simple phases in the
following procedure.

phase 1: Compute a graph K ′
S = (S,E(KS) \ E(T )).

phase 2: Remove from E(K ′
S) all the edges that close even

cycles in T .
phase 3: Determining a maximum weighted edge (u, v)

among the remaining egdes of E(K ′
S).

The correctness of the procedure is trivial. Observe that,
by using n2 processors, a graph K ′

S in the first phase can be
computed in Θ(1) parallel time, and the edge (u, v) in the third
phase can be determined in O(log n) parallel time. We show
that the second phase can be implemented by incorporating
with a BFS-NUMBERING algorithm.

Recall that, for a graph G = (V,E) with a rooted vertex
r ∈ V , a BFS-NUMBERING on G is a vertex labelling β :
V → {0, 1, . . . , p}, where p is the depth of the BFS’s tree
starting from r. The labelling starts with β(r) = 0, and assigns
for each vertex u ∈ V \ {r}, β(u) = β(r) + l, if u is l steps
away from r in the BFS’s tree. Let β be a BFS-NUMBERING
on T . The property of an edge that closes an even cycle in T
is shown as follows.

Lemma 4.2 (Cycle Evaluation by BFS-NUMBERING). An
edge (x, y) ∈ E(KS) \ E(T ) closes an even cycle in T if
and only if β(x) and β(y) are not both even or odd.

Proof: Consider an edge (x, y) ∈ E(KS)\E(T ). Let Pxy

denote a path (a subset of edges) from x to y in T . Without
loss of generality, we assume β(x) < β(y).

Suppose the edge (x, y) closes an even cycle in T . Then,
|Pxy ∪ (x, y)| = 2k, for some positive integer k > 1, and
|Pxy| = 2k− 1. Since x and y are 2k− 1 steps away in T , it
follows that β(y) = β(x) + 2k− 1. Thus, β(x) is even if and
only if β(y) is odd.

Conversely, suppose the edge (x, y) closes an odd cycle in
T . Then, |Pxy ∪ (x, y)| = 2k + 1, for some positive integer
k ≥ 1, and |Pxy| = 2k. Since x and y are 2k steps away in
T , it follows that β(y) = β(x) + 2k. Thus, β(x) is even if
and only if β(y) is even.

Observe that once a BFS-NUMBERING on T is computed,
the second phase can be proceeded by removing all the edges
whose end vertices both have odd or even labels. Clearly, using
n2 processors can carry this step in Θ(1) parallel time on a
COMMON CRCW PRAM. It was shown by Gazit and Miller
that computing BFS-NUMBERING on a graph with n vertices
can be done in O(log n) parallel time using n3 processors on
the COMMON CRCW PRAM model [15]. Hence, the parallel
complexity of the LLCDP is as follows.

Theorem 4.3 (LLCDP’s Parallel Complexity). The LLCDP
can be computed in O(log n) parallel time using n3 processors
on a COMMON CRCW PRAM.

B. Processing O(n) Possible Larger Candidate Diameters

By Lemma 4.1, there can be only at most n possible
disimilarities for d(C1). Those are restricted to the weights of
the edges e ∈ E(T ) for which duv ≤ de. Observe that once
the edge (u, v) is computed, determining those edge weights
can be done in Θ(1) parallel time using n processors on the
COMMON CRCW PRAM model. In fact, this step is relatively
easy to see since by assigning each processor to each edge of
E(T ), all the edge weights strictly greater than duv can then
be determined in Θ(1) parallel time. We state this result in the
following lemma.

Lemma 4.4 (LLCDP’s Post-processing). Given the edge
(u, v), a solution of the LLCDP. At most n possible disimi-
larities for d(C1) can be computed from T in constant Θ(1)
using n processors on a COMMON CRCW PRAM.

Next, we integrate the results in Lemma 4.4 and Theorem
4.3. The resource used in processing all possible disimilarities
for d(C1) by Lemma 4.1 is as follows.

Theorem 4.5 (Possible Larger Candidate Diameters Process-
ing). Given a MSDCP instance, O(n) possible disimilarities
for d(C1) can be computed in O(log n) parallel time using n3
processors on a COMMON CRCW PRAM.

Proof: We first apply a parallel MST algorithm by Chong
[14] in O(log n) parallel time and n2 processors on a COM-
MON CRCW PRAM to construct the corresponding LLCDP
instance. We apply the parallel computation by Theorem
4.3 to compute the LLCDP instance. Then, we apply the
parallel computation by Lemma 4.4 to compute O(n) possible
disimilarities.

C. Improved Bound

By Theorem 4.5, processing O(n) possible disimilarities
for d(C1) requires the computation tradeoff with O(log n) par-
allel time and n3 processors. Observe that, by this computation,
in return, we can generate O(n3) PPDP instances by trying
O(n) possible disimilarities for d(C1) with d1, and O(n2)
all possible disimilarities for d(C2). With these O(n3) PPDP
instances, we improve the parallel complexity of the MSDCP
in Theorem 3.4 as follows.

19th International Computer Science and Engineering Conference (ICSEC) 
Chiang Mai, Thailand, 23-26 November, 2015 
 



Theorem 4.6 (MSDCP’s Improved Parallel Complexity). The
MSDCP can be computed in O(log n) parallel time using n6
processors on a COMMON CRCW PRAM.

Proof: This result is by applying m(n) = O(n3) and
q(n) = n3 in the generic parallel complexity of the MSDCP.
We apply the parallel computation by Theorem 4.5 trading
off with O(n3) PPDP instances. The functions t(n) and p(n)
follows the parallel complexity of PPDP in Theorem 3.3.

So far, we have focused our discussion of the parallel
complexity of the MSDCP on the COMMON CRCW PRAM
model. As a result, when the parallel time complexity of
the MSDCP in O(log n) is considered, we have improved
the processor complexity by a factor of n. Nonetheless, n6
processors used are still too large to be considered practical.
In the next section, we will propose a more practical NC
algorithm for the MSDCP.

V. MORE PRACTICAL PARALLEL ALGORITHM

In this section, we discuss a more practical NC algorithm
for the MSDCP. The parallel algorithm in our discussion
can be implemented in O(log3 n) parallel time and n3.376

processors on the EREW PRAM model. Basically, this par-
allel algorithm is based on the simplification of MSDCP’s
subroutines on the EREW PRAM model.

We first describe the simplification. Then, a more practical
parallel algorithm on the EREW PRAM model is presented.

A. MSDCP’s Simplification Subroutines

We simplify the results in Theorems 3.3 and 4.3, Lemma
4.4, and Theorem 4.5, respectively. Our simplication results on
the EREW PRAM model are as follows.

Theorem 5.1 (PPDP’s Parallel Complexity). The PPDP can
be computed in O(log2 n) parallel time using n2.376 proces-
sors on an EREW PRAM.

Proof: By making n2 copies of the pair (d1, d2), the
PPDP-2SAT transformation by Lemma 3.2 can be imple-
mented in Θ(1) parallel time using n2 processors on an EREW
PRAM, so can the construction of the implication graph.
We apply a parallel transitive closure algorithm in O(log2 n)
parallel time using n2.376 processors on an EREW PRAM.

Theorem 5.2 (LLCDP’s Parallel Complexity). The LLCDP
can be computed in O(log2 n) parallel time using n2.376

processors on an EREW PRAM.

Proof: This result is due to the three-phases procedure
in section IV-A. We apply a parallel BFS-NUMBERING al-
gorithm by Gazit and Miller [15] that can be implemented in
O(log2 n) parallel time using n2.376 processors on an EREW-
PRAM in the second phase. By making n copies of a BFS-
NUMBERING, the third phase can be carried in Θ(1) parallel
time using n2 processors.

Lemma 5.3 (LLCDP’s Post-processing). Given the edge
(u, v), a solution of the LLCDP. At most n possible disimilar-
ities for d(C1) can be computed from T in O(log n) parallel
time using n processors on an EREW PRAM.

Proof: By making n2 copies of the edge (u, v), the
computation by lemma 4.4 can be implemented in Θ(1)
parallel time using n2 processors on an EREW PRAM.

Theorem 5.4 (Possible Larger Candidate Diameters Process-
ing). Given a MSDCP instance, O(n) possible disimilarities
for d(C1) can be computed in O(log2 n) parallel time using
n2.376 processors on an EREW PRAM.

Proof: We first apply a parallel MST algorithm by Chong
[14] in O(log n) parallel time and n2 processors on an EREW
PRAM to construct the corresponding LLCDP instance. We
apply the parallel computation by Theorem 5.2 to compute the
LLCDP instance. Then, we apply the parallel computation by
Lemma 5.3 to compute O(n) possible disimilarities.

B. The EREW PRAM Algorithm

We discuss the NC algorithm for the MSDCP on the
EREW PRAM model. Our parallel algorithm is assembled
with the simplication of MSDCP’s subroutines on the EREW
PRAM model. The parallel algorithm is obtained by adjusting
the configuration of the improved parallel complexity of the
MSDCP in Theorem 4.6 directly. This parallel algorithm is as
follows.

Theorem 5.5 (Basic EREW PRAM Algorithm). There ex-
ists a parallel algorithm for the MSDCP with O(n2 log2 n)
parallel time using n3.376 processors on an EREW PRAM.

Proof: The parallel algorithm is due to the generic parallel
complexity of the MSDCP. We apply the parallel computation
by Theorem 5.4 trading off with O(n3) PPDP instances. We
apply m(n) = O(n3) and q(n) = n. The functions t(n) and
p(n) follows the parallel complexity of PPDP in Theorem 5.1.

Notice that the time complexity of the parallel algorithm is
O(n2 log2 n), as m(n)

q(n) = O(n2). In particular, with q(n) = n,
any parallel algorithm by the generic parallel complexity of
the MSDCP is likely to require at least a polynomial ratio in
m(n)
q(n) , unless m(n) = O(n(s(n))), for some polylogarithmic
s(n). We claim that m(n) can be further reduced from O(n3)
to O(n log n) under the parallel complexity with O(log n)
parallel time and n3.376 processors. Intuitively, we reduce
O(n3) PPDP instances by employing a sorting algorithm
which sorts each O(n2) PPDP instances with a fixed d1 out.
Indeed, the notion behind the sorting is to seperate each O(n2)
PPDP instances with a fixed d1, and then arrange them in
monotonically increasing order on d2, so that the computation
among these O(n2) PPDP instances can be proceeded by p(n)
processors in binary searching fashion to locate a minimum
d2 in O(t(n) log n) parallel time. Observe that the binary
searching is capable because if a pair (d1, d2) is possible to
be the clusters’ diameters, then so is any pair (d1, dl) with
dl ≥ d2. As a result, this notion leaves just O(n log n) PPDP
instances required solving. Note that it is know that sorting n
integers on the EREW PRAM model can be optimally done
in O(log n) parallel time using n processors. Thus, reducing
O(n3) to O(n log n) PPDP instances requires the computation
tradeoff with O(log n) parallel time and n3 processors. Hence,
the improved version of the parallel algorithm for the MSDCP
is as follows.
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Theorem 5.6 (Improved EREW PRAM Algorithm). There
exists a parallel algorithm for the MSDCP with O(log3 n)
parallel time using n3.376 processors on an EREW PRAM.

Proof: The parallel algorithm is due to the generic parallel
complexity of the MSDCP. We apply the parallel computation
by Theorem 5.4, and the parallel sorting algorithm consecu-
tively, trading off with O(n log n) PPDP instances. We apply
m(n) = O(n log n) and q(n) = n processors. The functions
t(n) and p(n) follows the parallel complexity of PPDP in
Theorem 5.1.

In fact, any parallel algorithm on a COMMON CRCW
PRAM can be simluated on an EREW PRAM within
O(log n) parallel time using the same number of processors.
Note that this can be done by making n copies of the
input required in the computation in each parallel time step.
Straightforwardly, the improved parallel complexity of the
MSDCP in Theorem 4.6 yeilds a parallel algorithm with
O(log2 n) parallel time using n6 processors on an EREW
PRAM. Remark that the parallel algorithm by theorem 5.6
is considered more practical though it performs slower within
O(log n) parallel time since it requires many less processors.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper, minimum sum of diameters clustering has
been considered as the optimization problem called MINIMUM
SUM OF DIAMETERS CLUSTERING PROBLEM (MSDCP). For
the case of a partition into k = 2 clusters, we have shown that
the MSDCP in parallel belongs in complexity class NC, that
is, the problem has a polylogarithmic time parallel algorithm
with polynomial processor complexity. Fundamentally, our
complexity results on the MSDCP are based on the generic
complexity defined in the terms of the parallel complexity of
the decision problem called POSSIBLE PAIR OF DIAMETERS
PROBLEM (PPDP). By revealing that the PPDP can be solved
in O(log n) parallel time using n3 processors the COMMON
CRCW PRAM model, we showed that the parallel complexity
of the MSDCP on the COMMON CRCW PRAM model is
O(log n) parallel time and n7 processors. Accordingly, we
have introduced the technique of parallel algorithm which can
be applied to a MSDCP instance to improve the processor
complexity by a factor of n. Mainly, this technique ties up with
the parallel complexity of the computational problem called
LOWER BOUND ON LARGER CANDIDATE DIAMETER PROB-
LEM (LLCDP). On the COMMON CRCW PRAM model, we
showed that the LLCDP requires O(log n) parallel time and
n3 processors. As a result, when the parallel time complexity
of the MSDCP in O(log n) is considered, we have improved
the processor complexity to n6. In addition, regarding the issue
of high processor complexity, we have also proposed a more
practical NC parallel algorithm for the MSDCP. This parallel
algorithm is assembled with the simplication of MSDCP’s
subroutines on the EREW PRAM model. By showing that
both the PPDP and the LLCDP can be solved in O(log2 n)
parallel time using n2.376 processors on an EREW PRAM,
the more practical parallel algorithm can be implemented in
O(log3 n) parallel time using n3.376 processors on the EREW
PRAM model.

There are some remaining aspects of minimum sum of
diameters clustering that are of theoretical interest. For the

case of a partition into two clusters, in parallel, the lower
bound on processor complexity remains open when the parallel
complexity in O(log n) time is considered. The possibly loose
lower bound is n3 processors, as theoretically suggested by
the best known O(n3)-sequential algorithm by Ramnath [3].
Also, any NC algorithm with less processor complexity would
be way useful in many practical applications. For the case of a
partition into three or clusters, hardness in some approximation
classes for minimum sum of diameters remains open.
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