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Abstract—LW-sequences are in common currency for en-
coding binary trees. Wu et al. [13] proposed an algorithm
associated with tree rotations for listing all binary trees in diverse
representations including LW-sequences. In particular, such a list
of LW-sequences is generated in Gray-code order. Based on this
ordering, we propose an efficient algorithm for ranking binary
trees with n internal nodes. Our algorithm can be run in O(n2)

time and requires O(n) space.
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I. INTRODUCTION

There are many applications in computer science to ex-
haustively generate a class of combinatorial objects (objects
for short), e.g. combinatorial group testing, counterexample
searching, and algorithm performance analyzing. It is the prac-
tice to encode objects into integer sequences and generate these
sequences in a particular order. Due to enormous sequences
need to be generated, it is necessary to design an efficient
generating scheme. In particular, Gray-code order is a very
common use in recent development [7], [8], [11], [13], [16]–
[18] because the change between two successive sequences
is restricted to only one position. In addition, it is important
to efficiently rank and unrank objects in a list of Gray-code
order [1], [14], [15]. For a set of objects generated in a
particular order, a ranking algorithm can be used to determine
the ranking of an appointed object. By contrast, an unranking
algorithm can be used to produce the corresponding sequence
of object with respect to the specific ranking.

Binary trees are the most fundamental objects used in data
structure and so that there are many algorithms for generating
these objects [4], [6], [7], [9]–[11], [13], [17]. Pallo [6] adopted
the so-called left-weight sequences (LW-sequences for short) to
encode binary trees. Moreover, for generating LW-sequences in
lexicographic order, Pallo proposed a constant amortized time
algorithm (CAT algorithm for short). See also [12] for another

recursive CAT algorithm. At a later time, more algorithms that
generates LW-sequences in Gray-code order were provided
in [7], [10]. Recently, a loopless algorithm associated with
tree rotations for simultaneously generating four types of
binary tree representations in Gray-code order (including LW-
sequences) was proposed by Wu et al. [13].

Based on the Gray-code order of LW-sequences introduced
in [13], we will propose an efficient ranking algorithm in this
paper. The technique used in this paper relies on a set of
corresponding sequences of binary trees called left-distance
sequences (LD-sequences for short) that was originated by
Mäkinen in [5]. The correspondence between LW-sequences
and LD-sequences was found out by Lucas et al. [4]. In
addition, a flip-flap tree structure introduced in [13] will
facilitate our discussion about the Gray-code order of LW-
sequences.

We organize the remaining part of this paper as follows.
In Section 2, we give the definitions of LW-sequences and
LD-sequences formally and show the correspondence between
them. In Section 3, we introduce the structure of flip-flap trees
to generate the Gray-code order of LW-sequences. In Section 4,
we present our ranking algorithm and show the correctness.
Finally, we provide a concluding remark in the last section.

II. PRELIMINARIES

A rooted and ordered tree is called an extended binary tree
if every internal node has exactly two children. i.e., the left
child and the right child [2]. We suppose that an extended
binary tree T with n internal nodes are numbered from 1 to n
in symmetric order (i.e., we visit the tree T in the left subtree,
the root, and the right subtree recursively). For a node i ∈ T ,
we denote Ti as the subtree rooted at i. Moreover, the subtree
rooted at the left child of i, denoted by Li, is called the left
subtree of i, and the subtree rooted at the right child of i,
denoted by Ri, is called the right subtree of i. Also, The path
from the root to its leftmost leaf is called the left arm of T .
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A. Left-weight sequences

For a binary tree T , the left weight of a node i ∈
T , denoted by w(T, i), is defined to be the number of
leaves in Li. Pallo [6] further defined the integer sequence
w(T ) = (w1, w2, . . . , wn) to be the left-weight sequence
(LW-sequence for short) of T , where we simply write wi

instead of w(T, i). Note that LW-sequences are the most
adoption for encoding binary trees. For example, Fig. 1 shows
a binary tree T with 9 internal nodes whose LW-sequence
is w(T ) = (1, 2, 1, 1, 1, 2, 1, 5, 7). Pallo [6] characterized an
integer sequence (w1, w2, . . . , wn) to be an LW-sequence of a
binary tree if and only if the following conditions are fulfilled
for all i ∈ {1, 2, . . . , n}: (i) 1 ⩽ wi ⩽ i and (ii) i−wi ⩽ j−wj

for all i−wi +1 ⩽ j ⩽ i. The following lemma shows that a
node on the left arm of a subtree is easy to be checked.

Lemma 1. (See [12], [13].) Let T be a binary tree and j ∈ T
an internal node. A node i is contained in the left arm of Rj

if and only if i− wi = j.

T

w(T ) = (1, 2, 1, 1, 1, 2, 1, 5, 7)

d(T ) = (0, 0, 1, 2, 3, 3, 4, 2, 1)

1

2

3

4

5

6

7

8

9

Fig. 1. LW-sequences and LD-sequences of a binary tree.

B. Left-distance sequences

Mäkinen [5] used a measure called left distance to represent
a binary tree. For a binary tree T , a left-distance sequence (LD-
sequence for short) of T , denoted by d(T ) = (d1, d2, . . . , dn),
is an integer sequence to represent such a binary tree, where
the left distance di for each node i ∈ T is recursively defined
as follows:

di =


0 if i is the root of T ;
dp(i) if i is a left child;
dp(i) + 1 if i is a right child,

where p(i) stands for the parent of node i in T . Obviously,
every node lying on the left arm of T has the left distance 0.
Moreover, for a node i, every node lying on the left arm of Ri

has left distance di + 1. For instance, the LD-sequence of the
binary tree shown in Fig. 1 is d(T ) = (0, 0, 1, 2, 3, 3, 4, 2, 1).
Mäkinen [5] characterized an integer sequence (d1, d2, . . . , dn)
to be an LD-sequence if and only if the following conditions
are fulfilled: d1 = 0 and 0 ⩽ di ⩽ di−1 + 1 for 2 ⩽ i ⩽ n.

C. Sequence correspondences

Let W(n) and D(n) be the sets of all LW-sequences and
LD-sequences with length n, respectively. Lucas et al. [4]
revealed close relationship between these two sets. By trans-
forming from a particular representation of binary trees, called
codewords, introduced by Zerling [19] to LW-sequences and
LD-sequences respectively, Lucas et al. showed that the lists
of W(n) and D(n) preserve the reverse lexicographic order.
Indeed, the relationship is based solely on the property of
sequences and not of the corresponding trees. Since till now
there is no explicit scheme to transform LW-sequences to LD-
sequences or vice versa, this inspires us to provide transforma-
tions between these two types of sequences. Before this, we
need some auxiliary properties.

Lemma 2. Let T be a binary tree. For every internal node
i ∈ T ,

di =


0 if i = 1;

di−1 + 1 if i ⩾ 2 and wi = 1;

di−wi+1 otherwise.

Proof. Clearly, d1 = 0. Let i be the node in the left arm of
a subtree Rj for j ⩾ 1 such that wi = 1. It is obvious that
i = j+1 ⩾ 2. Since every node lying on the left arm of Rj has
left distance dj+1, we have di = dj+1 = di−1+1. Moreover,
if i′ is a node in the left arm of Rj and i′ ̸= i, by Lemma 1
we have j = i′ − wi′ . Thus, di′ = di = dj+1 = di′−wi′+1. □

Lemma 3. Let T be a binary tree and i ∈ T an internal node.
Then

wi =


i if di = 0;

1 if di ̸= 0 and di > di−1;

wi−1 + 1 if di ̸= 0 and di = di−1;

i− F (di) + wF (di) if di ̸= 0 and di < di−1,

where F (di) = max{j ∈ T : dj = di for j < i}.

Proof. We imagine that T is the right subtree of a dummy node
numbered by 0. If di = 0, then the node i is contained in the
left arm of R0 (i.e., the left arm of T ). By Lemma 1, we have
wi = i. We now consider di ̸= 0. For di > di−1, the node i
is contained in the left arm of Ri−1. Again by Lemma 1, we
have i − wi = i − 1, and thus wi = 1. For di = di−1, it is
clear that i−1 is the left child of i, and the right child of i−1
must be a leaf. Thus, wi = wi−1 + 1. Finally, for di < di−1,
it is clear that i − 1 ∈ Li and the node numbered by F (di)
is the left child of i. Since the number of leaves in RF (di) is
i− F (di), this implies that wi = i− F (di) + wF (di). □

Based on Lemma 2 and Lemma 3, linear time transforma-
tions between LW-sequences and LD-sequences are shown in
Fig 2. Therefore, we obtain the result of Theorem 4.

Theorem 4. Transformations between an LW-sequence and an
LD-sequence of length n can be done in O(n) time.
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Procedure LD-sequence to LW-sequence

begin
for i ← 2 to n do

if di = 0 then
wi ← i;

else
if di > di−1 then

wi ← 1;
F (di) ← i;

if di = di−1 then
wi ← wi−1 + 1;

if di < di−1 then
wi ← i− F (di) + wF (di);
F (di) ← i;

Procedure LW-sequence to LD-sequence

begin
d1 ← 0;
for i ← 2 to n do

if wi = 1 then
di ← di−1 + 1;

else
di ← di+1−wi ;

3 A loopless generation of binary tree sequences

Let Tn be the set of binary trees with n internal nodes. It is well-known that
|Tn| = 1

n+1

�2n
n

�
. A systematic way to describe all binary tree sequences is the

use of coding trees. A coding tree Tn is a rooted tree consisting of n levels such
that every node is associated with a label and the full labels along a path from
the root to a leaf in Tn represent the sequence of a binary tree T ∈ Tn. To
facilitate the description of Tn, the following terms are used in [19]. We say that
a non-leaf node x ∈ Tn has an up-fragment (respectively, a down-fragment) if
the labels of x’s children in Tn are arranged (from left to right) in increasing
order (respectively, decreasing order). In particular, a coding tree is called a
flip-flap tree if the following conditions hold: (1) every non-leaf node has either
an up-fragment or a down-fragment; (2) if a node has an up-fragment, then its
adjacency siblings (if exist) must have a down-fragment, and vice versa.

Accordingly, we construct a coding tree such that the root has label 1 and,
for each level i � 2, the two particular labels 1 and i always appear in any
fragment of level i. Moreover, if we restrict that the two nodes with labels 1 and

4 R.-Y. Wu and J.-M. Chang

two sets. By transforming from a particular representation of binary trees, called
codewords, introduced by Zerling [22] to LW-sequences and LD-sequences respec-
tively, Lucas et al. showed that the lists of W(n) and D(n) preserve the reverse
lexicographic order. Indeed, the relationship is based solely on the property of
sequences and not of the corresponding trees. Since till now there is no explicit
scheme to transform LW-sequences to LD-sequences or vice versa, this inspires
us to provide one. Based on Lemma 2 and Lemma 3, transformations between
these two types of sequences are shown in Fig 2.

Lemma 2. Let T be a binary tree and i ∈ T an internal node. Then

di =






0 if i = 1;

di−1 + 1 if i � 2 and wi = 1;

di−wi+1 otherwise.

Proof. Clearly, d1 = 0. Let i be the leaf in the left arm of a subtree Rj for j � 1.
It is obvious that i = j + 1 � 2 and wi = 1. Since every node lying on the left
arm of Rj has left distance dj + 1, we have di = dj + 1 = di−1 + 1. Moreover, if
i� is a node in the left arm of Rj and i� �= i, by Lemma 1 we have j = i� − wi� .
Thus, di� = di = dj+1 = di�−wi�+1. �

Lemma 3. Let T be a binary tree and i ∈ T an internal node. Then

wi =






i if di = 0;

1 if di �= 0 and di > di−1;

wi−1 + 1 if di �= 0 and di = di−1;

i− F (di) + wF (di) if di �= 0 and di < di−1.

Procedure LD-sequence to LW-sequence

begin
for i ← 1 to n do

if di = 0 then wi ← i;
else

if di > di−1 then wi ← 1;
if di = di−1 then wi ← wi−1 + 1;
if di < di−1 then wi ← i− F (di) + wF (di);

F (di) ← i;

Fig. 2. Linear time transformations between LW- and LD-sequences.

III. FLIP-FLAP TREES AND GRAY-CODE ORDER
ENUMERATIONS

In [13], Wu et al. adopted the following coding tree, called
flip-flap tree, to describe the Gray-code order of all LW-
sequences of length n in a systematic way. A flip-flap tree
Tn is a rooted tree consisting of n levels such that every node
is associated with a label wi and every path from the root of Tn

to a leaf represents a distinct LW-sequence (w1, w2, . . . , wn).
A non-leaf node x ∈ Tn has an up-fragment (respectively, a
down-fragment) if the labels of x’s children in Tn are arranged
(from left to right) in increasing order (respectively, decreasing
order). In particular, a flip-flap tree introduced in [13] fulfills
the following conditions: (1) there is only one node (i.e., the
root) with label 1 in level 1; (2) for each level i ⩾ 2, the
two particular labels 1 and i appear in the boundary of each
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Fig. 3. A flip-flap tree T5 for LW-sequences and LD-sequences.

fragment; (3) every non-leaf node has either an up-fragment
or a down-fragment; (4) if a node has an up-fragment, then its
adjacency siblings (if exist) must have a down-fragment, and
vice versa (i.e., up-fragments and down-fragments alternately
appear in each level of Tn). According to the correspondences
between W(5) and D(5), Fig. 3 shows a flip-flap tree T5,
where every node is associated with two label wi and di (For
brief, we denoted by wi/di).

In the above arrangement of Tn if x and y are two adjacent
leaves, the sequences from the root to x and to y are said to be
consecutive. Wu et al. [13] showed that in a flip-flap tree any
two consecutive LW-sequences differ in exactly one digit. This
establishes the base to enumerate LW-sequences in Gray-code
order. Although the list of LW-sequences produces a Gray-
code order, it should be note that the list of the corresponding
LD-sequences does not. For instance, the second and the
third LD-sequences generated from T5 are (0, 0, 0, 0, 1) and
(0, 0, 0, 1, 2), respectively (see Fig. 3). Nonetheless, the usage
of LD-sequences has the advantage of ranking binary trees in
the arrangement of Tn. The following property is significant
when we design the ranking algorithm.

Proposition 5. Let x ∈ Tn be a non-leaf node with label (i.e.,
the left distance) k in the ith level. Then, x has k + 2 sons
labeld by 0, 1, . . . , k + 1, where these sons are arranged in
either an up-fragment or a down fragment.

In what follows, unless otherwise stated, we use left
distance to indicate the label of a node in Tn. Let Ai,k denote
the number of leaves in the subtree rooted at a node with label
k in the ith level of Tn. Obviously, An,k = 1 for 0 ⩽ k ⩽ n−1
and An−1,k = k + 2 for 0 ⩽ k ⩽ n − 2. In general, by
Proposition 5, we have

Ai,k =

k+1∑
j=0

Ai+1,j (1)

where 1 ⩽ i ⩽ n− 1 and 0 ⩽ k ⩽ i− 1.
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For the efficiency of computation, we define the following
formula:

Bi,k =

k∑
j=0

Ai,j (2)

where 1 ⩽ i ⩽ n and 0 ⩽ k ⩽ i − 1. Solving Eq. (2), we
obtain the following lemma.

Lemma 6. Let n ⩾ 2 be an integer. For each i = 2, . . . , n
and 1 ⩽ k ⩽ i− 1, we have

Bi,k =
k + 1

2m+ k + 1

(
2m+ k + 1

m

)
(3)

where m = n− i+ 1.

Table I and Table II show the computational results of Ai,k

and Bi,k for n = 5. For convenience, such tables are called
triangle table and accumulation table, respectively.

TABLE I. THE TRIANGLE TABLE FOR n = 5

Ai,k k
n i 0 1 2 3 4

1 42
2 14 28

5 3 5 9 14
4 2 3 4 5
5 1 1 1 1 1

TABLE II. THE ACCUMULATION TABLE FOR n = 5

Bi,k k
n i 0 1 2 3 4

1 42
2 14 42

5 3 5 14 28
4 2 5 9 14
5 1 2 3 4 5

Note that the term Bi,k indicates the total number of leaves
for those subtrees rooted at nodes with labels from 0 to k in
the ith level of Tn. In addition, from Eq. (3) we can obtain
the following corollary which is useful for designing ranking
algorithm.

Corollary 7. Let n ⩾ 2 be integer. For each i = 2, . . . , n and
1 ⩽ k ⩽ i− 1, we have

Bi−1,k =
Bi,k

m+ 1
· (2m+ k + 1)(2m+ k + 2)

m+ k + 2
(4)

where m = n− i+ 1.

IV. RANKING ALGORITHM

In this section, we will develop the ranking algorithm. Let
Tn be the set of binary trees with n internal nodes. It is well-
known that |Tn| = 1

n+1

(
2n
n

)
(i.e., the nth level of Catalan

number [2]). Since the correspondence between LW- and LD-
sequences has already built in the previous section, we can
obtain the rank of a binary tree T ∈ Tn in the Gray-code
order of LW-sequences if the rank of T associating with the
LD-sequence in Tn is provided.

For a given binary tree T associated with LD-sequence
d(T ) = (d1, d2, . . . , dn), let xi be the node with label di in
Tn, and let R(i) be the rank of xi in the ith level of Tn. Note
that the goal of our ranking algorithm is to find R(n). For
instance, if we consider the path x1, x2, x3, x4, x5 with labels
0, 1, 2, 2, 0 in T5 (see Fig. 3), we have R(1) = 0, R(2) = 1,
R(3) = 2, R(4) = 7 and R(5) = 22. Since each level of
Tn begins with an up fragment for LD-sequences and the two
types of fragments appear alternately, it is easy to check the
following property.

Proposition 8. For 1 ⩽ i < n, if the rank of a node in the
ith level of Tn is even (respectively, odd), then its sons are
arranged in an up fragment (respectively, a down fragment).

Moreover, since the ranking is performed from left to right
in Tn and it starts with 0 at the beginning, we first set R(i) = 0
for each i = 1, 2, . . . , n. From Proposition 8, there are two
cases to update R(j) for i + 1 ⩽ j ⩽ n. If R(i) ≡ 0 (mod)
2, the sons of xi are arranged in an up fragment. In this case,
we have

R(j) = R(j) +Bℓ,di+1−1 (5)

provided that di+1 ̸= 0 and ℓ = n − j + i + 1. On the other
hand, if R(i) ≡ 1 (mod) 2, the sons of xi are arranged in a
down fragment. In this case, we have

R(j) = R(j) + (Bℓ,di+1 −Bℓ,di+1) (6)

provided that di+1 ̸= di +1 and ℓ = n− j+ i+1. According
to Eqs. (5) and (6), we design the algorithm shown in Fig. 4.

Note that the term Bi,k indicates the total number of leaves
for those subtrees rooted at nodes with labels from 0 to k in the
ith level of Tn. In addition, from Eq. (3) we can obtain the
following corollaries which are useful for designing ranking
algorithm.

Corollary 7. Let n > 2 be integer. For each i = 2, . . . , n and

1 6 k 6 i � 1, we have

Bi�1,k =

Bi,k

m + 1

· (2m + k + 1)(2m + k + 2)

m + k + 2

(4)

where m = n � i + 1.

IV. RANKING ALGORITHM

In this section, we will develop the ranking algorithm. Let
Tn be the set of binary trees with n internal nodes. It is well-
known that |Tn| =

1
n+1

�2n
n

�
(i.e., the nth level of Catalan

number [2]). Since the correspondence between LW- and LD-
sequences has already built in the previous section, we can
obtain the rank of a binary tree T 2 Tn in the Gray-code
order of LW-sequences if the rank of T associating with the
LD-sequence in Tn is provided.

For a given binary tree T associated with LD-sequence
d(T ) = (d1, d2, . . . , dn), let xi be the node with label di in
Tn, and let R(i) be the rank of xi in the ith level of Tn. Note
that the goal of our ranking algorithm is to find R(n). For
instance, if we consider the path x1, x2, x3, x4, x5 with labels
0, 1, 2, 2, 0 in T5 (see Fig. 3), we have R(1) = 0, R(2) = 1,
R(3) = 2, R(4) = 7 and R(5) = 22. Since each level of
Tn begins with an up fragment for LD-sequences and the two
types of fragments appear alternately, it is easy to check the
following property.

Proposition 8. For 1 6 i < n, if the rank of a node in the

ith level of Tn is even (respectively, odd), then its sons are

arranged in an up fragment (respectively, a down fragment).

Moreover, since the ranking is performed from left to right
in Tn and it starts with 0 at the beginning, we first set R(i) = 0

for each i = 1, 2, . . . , n. From Proposition 8, there are two
cases to update R(j) for i + 1 6 j 6 n. If R(i) ⌘ 0 (mod)
2, the sons of xi are arranged in an up fragment. In this case,
we have

R(j) = R(j) + B`,di+1�1 (5)

provided that di+1 6= 0 and ` = n � j + i + 1. On the other
hand, if R(i) ⌘ 1 (mod) 2, the sons of xi are arranged in a
down fragment. In this case, we have

R(j) = R(j) + (B`,di+1 � B`,di+1) (6)

provided that di+1 6= di + 1 and ` = n � j + i + 1.

According to Eqs. (5) and (6), we design the following
algorithm.

We observe that the numerator of a fractional number in
the right hand side of Eq. (4) includes the product of two
consecutive integers. Let x = 2m + k + 1 and y = m + k + 2.
Also, define f(x) = x(x+1) and g(y) = y. Then, Eq. (4) can
be reformulated as follows:

Bi�1,k =

Bi,k

m + 1

· f(x)

g(y)

(7)

Function Ranking(d1, d2, . . . , dn)
begin

for i = 1 to n do R(i) = 0;
for i = 1 to n � 1 do

if R(i) ⌘ 0 (mod) 2 then // an up fragment

if di+1 6= 0 then

for j = i + 1 to n do

R(j) = R(j) + B`,di+1�1 where
` = n � j + i + 1;

else // a down fragment

if di+1 6= di + 1 then

for j = i + 1 to n do

R(j) = R(j) + (B`,di+1 � B`,di+1)
where ` = n � j + i + 1;

return R(n);

where m = n � i + 1. To obtain some requisite terms in
the accumulation table from Eq. (7), we build a preprocessing
table of size (2n � 3) ⇥ 2 to store the terms of f(z) and g(z)

for 3 6 z 6 2n � 1, where the first term z = 2m + k + 1 =

m + k + 2 = 3 is due to the initial conditions m = 1 (i.e.,
i = n) and k = 0. For example, for n = 5, the desired table
is as follows.

z g(z) f(z)

3 3 12
4 4 20
5 5 30
6 6 42
7 7 56
8 8 72
9 9 90

Clearly, f(z+1) = f(z) · (z+2)
z and g(z+1) = g(z)+1. Thus,

the table can be constructed in O(n) time. In addition, since
every element in the last row of the accumulation table is easy
to obtain (i.e., Bn,k = k +1), we can compute all elements in
the same column by using the preprocessing table.

For example, we have known B4,1 = 5. Since i = 4 (i.e.,
m = 5�4+1 = 2) and k = 1 in this stage, we have the terms
g(y) = y = m+k+2 = 5 and f(x) = x(x+1) = (6)(7) = 42

where x = 2m+ k +1 = 6. Thus, using x and y as indices to
search for the preprocessing table, we can computed B3,1 as
follows:

B3,1 =

B4,2

m + 1

· f(6)

g(5)

=

5

3

· 42

5

= 14.

To continue the computation of B2,1, since the current stage
has changed i to 3 (i.e., m = 3) and k = 1, the indices x and y

can be updated from their previous values by adding an extra
offset 2 and 1, respectively. Thus, we have x = 6+2 = 8 and
y = 5 + 1 = 6. Furthermore, we obtain

B2,1 =

B3,1

m + 1

· f(8)

g(6)

=

14

4

· 72

6

= 42.

We repeat such a process until all required elements in the
same column are calculated. Since building the preprocessing

Fig. 4. The ranking algorithm.

Example 1. To perform Ranking(0, 1, 2, 2, 0), we initially set
R(1) = R(2) = R(3) = R(4) = R(5) = 0. When i = 1, the
sons of x1 are arranged in an up fragment because R(1) = 0
is even. Since d2 ̸= 0, we have the following updates:

R(2) = R(2) +B5,0 = 0 + 1 = 1,

R(3) = R(3) +B4,0 = 0 + 2 = 2,

R(4) = R(4) +B3,0 = 0 + 5 = 5,
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R(5) = R(5) +B2,0 = 0 + 14 = 14.

When i = 2, the sons of x2 are arranged in a down
fragment because R(2) = 1 is odd. In this case, since
di+1 = di + 1 = 3, we keep R(3), R(4) and R(5) to be
unchanged. When i = 3, the sons of x3 are arranged in an up
fragment because R(3) = 2 is even. Since d4 ̸= 0, we have
the following updates:

R(4) = R(4) +B5,1 = 5 + 2 = 7,

R(5) = R(5) +B4,1 = 14 + 5 = 19.

Finally, when i = 4, the sons of x4 are arranged in a down
fragment because R(4) = 7 is odd. Since d5 ̸= d4 + 1, we
perform the following update:

R(5) = R(5) +B5,3 −B5,1 = 19 + 4− 1 = 22.

As a result, the algorithm outputs R(5) = 22. □

Obviously, building the accumulation table using Eq. (3)
requires O(n2) time and space. Now, we will show that every
element in the accumulation table can indeed be accessed in a
constant time provided we make a preprocessing in advance.
We observe that the numerator of a fractional number in
the right hand side of Eq. (4) includes the product of two
consecutive integers. Let x = 2m+ k+1 and y = m+ k+2.
Also, define f(x) = x(x+1) and g(y) = y. Then, Eq. (4) can
be reformulated as follows:

Bi−1,k =
Bi,k

m+ 1
· f(x)
g(y)

(7)

where m = n − i + 1. To obtain some requisite terms in
the accumulation table from Eq. (7), we build a preprocessing
table of size (2n− 3)× 2 to store the terms of f(z) and g(z)
for 3 ⩽ z ⩽ 2n − 1, where the first term z = 2m + k + 1 =
m + k + 2 = 3 is due to the initial conditions m = 1 (i.e.,
i = n) and k = 0. For example, for n = 5, the desired table
is as follows.

z g(z) f(z)

3 3 12
4 4 20
5 5 30
6 6 42
7 7 56
8 8 72
9 9 90

Clearly, f(z+1) = f(z) · (z+2)
z and g(z+1) = g(z)+1. Thus,

the table can be constructed in O(n) time. In addition, since
every element in the last row of the accumulation table is easy
to obtain (i.e., Bn,k = k+1), we can compute all elements in
the same column by using the preprocessing table.

For example, we have known B4,1 = 5. Since i = 4 (i.e.,
m = 5−4+1 = 2) and k = 1 in this stage, we have the terms
g(y) = y = m+k+2 = 5 and f(x) = x(x+1) = (6)(7) = 42

where x = 2m+ k+1 = 6. Thus, using x and y as indices to
search for the preprocessing table, we can computed B3,1 as
follows:

B3,1 =
B4,2

m+ 1
· f(6)
g(5)

=
5

3
· 42
5

= 14.

To continue the computation of B2,1, since the current stage
has changed i to 3 (i.e., m = 3) and k = 1, the indices x and y
can be updated from their previous values by adding an extra
offset 2 and 1, respectively. Thus, we have x = 6+2 = 8 and
y = 5 + 1 = 6. Furthermore, we obtain

B2,1 =
B3,1

m+ 1
· f(8)
g(6)

=
14

4
· 72
6

= 42.

We repeat such a process until all required elements in the
same column are calculated. Since building the preprocessing
table needs O(n) time and space and the ranking algorithm
can be run in O(n2) time, we conclude the following.

Theorem 9. For LW-sequences of binary trees with n internal
nodes, determining the rank of a tree in a Gray-code oder can
be done in O(n2) time and O(n) space.

V. CONCLUDING REMARKS

In this paper, we present a ranking algorithm of binary
trees with n internal nodes encoded by LW-sequences in a
Gray-code order. This algorithm can be run in O(n2) time
and O(n) space, respectively. As a future work, an interesting
problem is to propose an unranking algorithm. To the best of
our knowledge, so far no algorithm exists to solve such an
unranking problem of Gray-code order for LW-sequences.
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