Folded Crossed Cube with Five or More Dimensions Is Not Vertex-Transitive

Kung-Jui Pai*, Jou-Ming Chang ${ }^{\dagger}$ and Jinn-Shyong Yang ${ }^{\ddagger}$
*Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, Taiwan
${ }^{\dagger}$ Institute of Information and Decision Sciences, National Taipei University of Business, Taipei, Taiwan
${ }^{\ddagger}$ Department of Information Management, National Taipei University of Business, Taipei, Taiwan

Abstract

Kulasinghe and Bettayeb [Inform. Process. Lett. 53 (1995) 33-36] proved that the crossed cube $C Q_{n}$ (a synonym called multiply twisted hypercube in that paper) fails to be vertextransitive for $n \geqslant 5$. In this paper, we study vertex-transitivity on folded crossed cubes $F C Q_{n}$ and show that $F C Q_{n}$ is vertextransitive if and only if $n \in\{1,2,4\}$.

Keywords—Vertex-transitivity; Folded Crossed Cubes; Interconnection networks.

I. Introduction

Interconnection networks are usually modeled as undirected simple graphs $G=(V, E)$, where the vertex set V and the edge set E represent the sets of processing elements and communication channels, respectively. One of the central issues of an interconnection network is to consider the symmetry. Formally, an automorphism of a graph $G=(V, E)$ is a permutation ϕ on V such that the pair of vertices (u, v) form an edge in E if and only if the pair $(\phi(u), \phi(v))$ also form an edge in E. We say that two vertices v and w belong to the same orbit if there is an automorphism ϕ of G such that $\phi(v)=w$.
Definition 1. (See [4], [10].) A graph $G=(V, E)$ is vertextransitive (also known as vertex-symmetric) if for every two vertices $v, w \in V$, there exists an automorphism of G which maps v to w. That is, a vertex-transitive graph has just one orbit.

Intuitively, a vertex-transitive graph looks the same when we take a view from every vertex. The vertex-transitive property is advantageous to the design and simulation of some algorithms in graphs. Akers and Krishnamurthy [3] showed that every Cayley graph over a general group is vertex-transitive, and thus is regular. Accordingly, the lack of vertex-transitivity for a class of graphs \mathscr{C} does remove \mathscr{C} from the family of Cayley graphs. For example, Abraham and Padmanabhan [1] and Cull and Larson [5] respectively pointed out that topologies for multiprocessor systems such as twisted cubes $T Q_{n}$ and Möbius cubes $M Q_{n}$ are possessed 978-1-4799-4963-2/14/\$31.00 © 2014 IEEE
of the property of asymmetry. In addition, Kulasinghe and Bettayeb [11] showed that crossed cubes $C Q_{n}$ fail to be vertextransitive for $n \geqslant 5$. Liu et al. [12] found out that although locally twisted cubes $L T Q_{n}$ are not vertex-transitive for $n \geqslant 4$, these cubes are in possession of the property of even-odd-vertex-transitivity, i.e., each of them has just two orbits for which every pair of vertices with the same parity belong to the same orbit.

In this paper, we investigate the vertex-transitivity of folded crossed cubes (defined later in Section II) and show the following result.
Theorem 2. The folded crossed cube $F C Q_{n}$ is vertextransitive if and only if $n \in\{1,2,4\}$.

II. Folded crossed cubes

The n-dimensional crossed cube $C Q_{n}$, proposed first by Efe [6], [7], is a variant of an n-dimensional hypercube. One advantage of $C Q_{n}$ is that the diameter is only about one half of the diameter of an n-dimensional hypercube. For more properties of $C Q_{n}$, the reader can refer to [8], [11]

In this paper, we use a unique binary string $v_{n-1} v_{n-2} \cdots v_{1} v_{0}$, which is also called a lable, of length n to identify a vertex v in $C Q_{n}$. For conciseness, sometimes labels of vertices are also represented by their decimal. Two 2-bit binary strings $v=v_{1} v_{0}$ and $w=w_{1} w_{0}$ are pair-related, denoted by $v \sim w$, if and only if $(v, w) \in\{(00,00),(10,10),(01,11),(11,01)\} . C Q_{n}$ is the labeled graph with the following recursively fashion:

Definition 3. (See [6], [7].) $C Q_{1}$ is the complete graph on two vertices with labels 0 and 1 . For $n \geqslant 2, C Q_{n}$ consists of two subcubes $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$ such that every vertex in $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$ is labeled by 0 and 1 in its leftmost bit, respectively. Two vertices $v=0 v_{n-2} \cdots v_{1} v_{0} \in V\left(C Q_{n-1}^{0}\right)$ and $w=1 w_{n-2} \cdots w_{1} w_{0} \in V\left(C Q_{n-1}^{1}\right)$ are joined by an edge if and only if

Fig. 1. Crossed cube $C Q_{3}$ and folded crossed cube $F C Q_{3}$, where v_{D} (respectively, v_{B}) denotes the decimal (respectively, binary) representation of the vertex v.
(1) $v_{n-2}=w_{n-2}$ if n is even, and
(2) $v_{2 i+1} v_{2 i} \sim w_{2 i+1} w_{2 i}$ for $0 \leqslant i<\lfloor(n-1) / 2\rfloor$.

Let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$. Crossed cubes can also be defined equivalently as follows:

Lemma 4. (See [6], [7].) Two vertices $v=v_{n-1} v_{n-2} \cdots v_{0}$ and $w=w_{n-1} w_{n-2} \cdots w_{0}$ are joined by an edge in $C Q_{n}$ if and only if there exists an integer $i \in \mathbb{Z}_{n}$ such that
(1) $v_{n-1} v_{n-2} \cdots v_{i+1}=w_{n-1} w_{n-2} \cdots w_{i+1}$,
(2) $v_{i} \neq w_{i}$,
(3) $v_{i-1}=w_{i-1}$ if i is odd, and
(4) $v_{2 j+1} v_{2 j} \sim w_{2 j+1} w_{2 j}$ for $i \in \mathbb{Z}_{\lfloor i / 2\rfloor}$.

In the above lemma, v and w have the leftmost differing bit at position i. In this case, v and w are said to be the i neighbors to each other, and for notational convenience we write $w=N_{i}(v)$ or $v=N_{i}(w)$. Also, the edge (v, w) is called an i-dimensional edge of $C Q_{n}$.

Inspired by the idea of El-Amawy and Latifi [9] that proposed the so-called folded hypercubes to strengthen the structure of hypercubes, a variation of crossed cubes was first introduced in [13] as follows. The n-dimensional folded crossed cube, denoted $F C Q_{n}$, is constructed from $C Q_{n}$ by adding a set of edges (v, w) with $v_{n-1} v_{n-2} \cdots v_{1} v_{0}=$ $\bar{w}_{n-1} \bar{w}_{n-2} \cdots \bar{w}_{1} \bar{w}_{0}$ for $0 \leqslant v \leqslant\left(2^{n}-1\right)$. Hence, every edge in such a set is called a complement edge. Similarly, we use $w=N_{*}(v)$ or $v=N_{*}(w)$ to denote the adjacency of v and w in this case. Fig. 3 shows crossed cube $C Q_{3}$ and folded crossed cube FCQ_{3}, where solid lines indicate normal edges and dashed lines represent complement edges. Refer to [2] for more properties of $F C Q_{n}$.

Throughout this paper, we also use the following notations. Let $N_{G}(v)$ denote the set of vertices adjacent to v in a graph G, and we omit the subscript G if it is clear from the context. We use $P_{n}=v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n}$ to stand for a path of length n starting from v_{0}. Moreover, $P_{n}=v_{0} \xrightarrow{d_{1}} v_{1} \xrightarrow{d_{2}}$ $\ldots \xrightarrow{d_{n}} v_{n}$ indicates that vertices v_{i-1} and v_{i} are connected by a d_{i}-dimensional edge or a complement edge if $d_{i}=" *$ ". In particular, the notation P_{n}^{w} means that the path P_{n} does not pass through a vertex w.

III. Proof of the main result

Since $F C Q_{1}$ and $F C Q_{2}$ are isomorphic to complete graph, respectively, with two vertices and four vertices (i.e., K_{2} and K_{4}), the following lemma is an immediate result.

Lemma 5. $F C Q_{1}$ and $F C Q_{2}$ are vertex-transitive.

Lemma 6. $F C Q_{3}$ is not vertex-transitive.
Proof. Suppose on the contrary that $F C Q_{3}$ is vertex-transitive, i.e., there exists an automorphism ϕ of $F C Q_{3}$ such that $\phi(1)=$ 0 . From Figure 3(b), we can easily check $N(1)=\{0,3,6,7\}$ and $N(0)=\{1,2,4,7\}$. Let G_{i} be the subgraph of $F C Q_{3}$ induced by $N(i)$ for $i=0,1$. Clearly, G_{1} contains a path of length 2 (i.e., the path $0 \rightarrow 7 \rightarrow 6$), whereas G_{0} does not. This contradicts that ϕ is an automorphism of $F C Q_{3}$.

Lemma 7. $F C Q_{4}$ is vertex-transitive.
Proof. Let e be the identity permutation on the vertices of $F C Q_{4}$, i.e., $e(i)=i$ for all $i \in \mathbb{Z}_{16}$. If ϕ is an automorphism of G, then so is its inverse ϕ^{-1}, and if ψ is a second automorphism of G, then the product $\phi \cdot \psi$ is an automorphism. Hence, to show the result, we only need to provide automorphisms ϕ_{i}, $i=1,2, \ldots, 15$, such that $\phi_{i}(0)=i$ (i.e., $\phi_{i}^{-1} \phi_{j}$ maps vertex i to vertex j for any $i, j \in \mathbb{Z}_{16}$). The following are the desired automorphism:

(a)

Fig. 2. Illustration of automorphisms of $F C Q_{4}$.
$\phi_{1}=(1,0,3,2,7,6,5,4,11,10,9,8,13,12,15,14)$
(see Fig. 2(a) and 2(b) for illustration);
$\phi_{2}=(2,3,0,1,10,11,8,9,6,7,4,5,14,15,12,13)$
(see Fig. 2(a) and its flip on the diagonal D);
$\phi_{3}=(3,2,1,0,9,8,11,10,5,4,7,6,15,14,13,12)$
(apply ϕ_{1}, see Fig. 2(b) and then flip on the diagonal D); $\phi_{4}=(4,5,6,7,0,1,2,3,12,13,14,15,8,9,10,11)$
(see Fig. 2(a) and its flip on the x-axis);
$\phi_{5}=(5,4,7,6,15,14,13,12,3,2,1,0,9,8,11,10)$
(apply ϕ_{1}, see Fig. 2(b) and then rotate 90 degrees in clockwise direction);
$\phi_{6}=(6,7,4,5,2,3,0,1,14,15,12,13,10,11,8,9)$
(see Fig. 2(a) and its rotation of 90 degrees in clockwise direction);
$\phi_{7}=(7,6,5,4,1,0,3,2,13,12,15,14,11,10,9,8)$
(apply ϕ_{1}, see Fig. 2(b) and then flip on the x-axis);
$\phi_{8}=(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7)$
(see Fig. 2(a) and its flip on the y-axis);
$\phi_{9}=(9,8,11,10,3,2,1,0,15,14,13,12,5,4,7,6)$

(b)
(apply ϕ_{1}, see Fig. 2(b) and then rotate 90 degrees in counterclockwise direction);
$\phi_{10}=(10,11,8,9,2,3,0,1,14,15,12,13,6,7,4,5)$
(see Fig. 2(a) and its rotation of 90 degrees in counterclockwise direction);
$\phi_{11}=(11,10,9,8,13,12,15,14,1,0,3,2,7,6,5,4)$
(apply ϕ_{1}, see Fig. 2(b) and then flip on the y-axis);
$\phi_{12}=(12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3)$
(see Fig. 2(a) and its flip on both x-axis and y-axis);
$\phi_{13}=(13,12,15,14,11,10,9,8,7,6,5,4,1,0,3,2)$
(apply ϕ_{1}, see Fig. 2(b) and then flip on both x-axis and y-axis);
$\phi_{14}=(14,15,12,13,6,7,4,5,10,11,8,9,2,3,0,1)$
(see Fig. 2(a) and its flip on the anti-diagonal D^{-1});
$\phi_{15}=(15,14,13,12,5,4,7,6,9,8,11,10,3,2,1,0)$
(apply ϕ_{1}, see Fig. 2(b) and then flip on the anti-diagonal $\left.D^{-1}\right)$.

Lemma 8. $F C Q_{5}$ is not vertex-transitive.

Proof. Suppose on the contrary that $F C Q_{5}$ is vertex-transitive, i.e., there exists an automorphism ϕ of $F C Q_{5}$ such that $\phi(0)=$ 4. By Lemma 4 and the complement edges, we have $N(0)=$ $\{1,2,4,8,16,31\}$ and $N(4)=\{0,5,6,12,27,28\}$. We prove the lemma through the following two claims.

Claim 1. Let $w \in N(4)$ be any vertex. There exist at least three vertices $v_{1}, v_{2}, v_{3} \in N(4) \backslash\{w\}$ such that v_{i} is connected by a P_{2}^{4} starting from w in $F C Q_{5}$ for $i \in\{1,2,3\}$.

We directly expatiate on these paths as follows:
For $w=0$, we have $0 \xrightarrow{*} 31 \xrightarrow{4} 5,0 \xrightarrow{1} 2 \xrightarrow{2} 6$ and $0 \xrightarrow{3} 8 \xrightarrow{2} 12$.

For $w=5$, we have $5 \xrightarrow{4} 31 \xrightarrow{*} 0,5 \xrightarrow{*} 26 \xrightarrow{0} 27$ and $5 \xrightarrow{2} 3 \xrightarrow{*} 28$.

For $w=6$, we have $6 \xrightarrow{2} 2 \xrightarrow{1} 0,6 \xrightarrow{*} 25 \xrightarrow{1} 27$ and $6 \xrightarrow{3} 14 \xrightarrow{1} 12$.

For $w=12$, we have $12 \xrightarrow{2} 8 \xrightarrow{3} 0,12 \xrightarrow{1} 14 \xrightarrow{3} 6$ and $12 \xrightarrow{4} 20 \xrightarrow{3} 28$.

For $w=27$, we have $27 \xrightarrow{0} 26 \xrightarrow{*} 5,27 \xrightarrow{1} 25 \xrightarrow{*} 6$ and $27 \xrightarrow{2} 29 \xrightarrow{0} 28$.

For $w=28$, we have $28 \xrightarrow{*} 3 \xrightarrow{2} 5,28 \xrightarrow{3} 20 \xrightarrow{4} 12$ and $28 \xrightarrow{0} 29 \xrightarrow{2} 27$.

Claim 2. Let $w=1 \in N(0)$. There exist at most two vertices $v_{1}, v_{2} \in N(0) \backslash\{1\}$ such that v_{i} is connected by a P_{2}^{0} starting from w in $F C Q_{5}$ for $i \in\{1,2\}$.

By Lemma 4, we observe that

$$
N(1) \backslash\{0\}=\{3,7,11,19,30\}
$$

Moreover,

$$
\begin{gathered}
N(3) \backslash\{1\}=\{2,5,9,17,28\}, \\
N(7) \backslash\{1\}=\{5,6,13,24,29\}, \\
N(11) \backslash\{1\}=\{9,10,13,20,25\}, \\
N(19) \backslash\{1\}=\{12,17,18,21,25\},
\end{gathered}
$$

and

$$
N(30) \backslash\{1\}=\{6,22,26,28,31\} .
$$

Thus, we can check that only the two vertices $2,31 \in N(0) \backslash$ $\{1\}$ are connected by a P_{2}^{0} starting from w, i.e., $1 \xrightarrow{1} 3 \xrightarrow{0} 2$ and $1 \xrightarrow{*} 30 \xrightarrow{0} 31$.

According to the two claims, it contradicts that ϕ is an automorphism of $F C Q_{5}$.

In what follows, we will consider the vertex-transitivity on $F C Q_{n}$ with higher dimension, i.e., $n \geqslant 6$. Before this, we need some auxiliary properties.

Lemma 9. (See Lemma 5 in [11].) For $n \geqslant 6$, there exists at most one pair of neighbors of vertex 0 in $C Q_{n}$ that are not linked by a P_{3}.

By Lemma 4, the following two properties can be obtained directly from the adjacency of vertices in $F C Q_{n}$.

Proposition 10. For $v, w \in V\left(F C Q_{n}\right)$, if $v_{2 k+1} v_{2 k}=01$ and $w_{2 k+1} w_{2 k}=10$ or $v_{2 k+1} v_{2 k}=00$ and $w_{2 k+1} w_{2 k}=11$ for some $k \in \mathbb{Z}_{\lfloor n / 2\rfloor}$, then v and w cannot be adjacent with the exception of (v, w) being a complement edge.

Proposition 11. For $v, w \in V\left(F C Q_{n}\right)$, if $v_{2 k+1} v_{2 k}=$ $w_{2 k+1} w_{2 k}=01$ or $v_{2 k+1} v_{2 k}=w_{2 k+1} w_{2 k}=11$ for some $k \in \mathbb{Z}_{\lfloor n / 2\rfloor}$, then v and w cannot be adjacent via an edge with dimension i for $i \geqslant 2 k$ or a complement edge.

Lemma 12. For $n \geqslant 6$, every vertex $v \in N(0) \backslash\left\{1,2^{n}-1\right\}$ in $F C Q_{n}$ is connected by a P_{3} starting from $2^{n}-1$.

Proof. Clearly, $v \in\left\{2^{i}: 1 \leqslant i \leqslant n\right\}$. We expatiate on these paths as follows. If $v=2^{1}$, we have

$$
\left(2^{n}-1\right) \xrightarrow{2}\left(2^{n}-2^{2}-2^{1}-1\right) \xrightarrow{*}\left(2^{2}+2^{1}\right) \xrightarrow{2} 2^{1}
$$

If $v=2^{i}$ for even $i \geqslant 2$, we have
$\left(2^{n}-1\right) \xrightarrow{i}\left(2^{n}-2^{i}-\sum_{j=1}^{i / 2} 2^{2 j-1}-1\right) \xrightarrow{i-1}\left(2^{n}-2^{i}-1\right) \xrightarrow{*} 2^{i}$. If $v=2^{i}$ for odd $i \geqslant 3$, we have
$\left(2^{n}-1\right) \xrightarrow{i}\left(2^{n}-2^{i}-\sum_{j=1}^{\lfloor i / 2\rfloor} 2^{2 j-1}-1\right) \xrightarrow{i-2}\left(2^{n}-2^{i}-1\right) \xrightarrow{*} 2^{i}$.

For example, we consider some vertices

$$
v \in N(0) \backslash\left\{1,2^{7}-1\right\}
$$

in $F C Q_{7}$. If $v=2$, we have

$$
1111111_{B} \xrightarrow{2} 1111001_{B} \xrightarrow{*} 0000110_{B} \xrightarrow{2} 0000010_{B}=v .
$$

If $v=2^{6}$, we have

$$
1111111_{B} \xrightarrow{6} 0010101_{B} \xrightarrow{5} 0111111_{B} \xrightarrow{*} 1000000_{B}=v
$$

If $v=2^{5}$, we have

$$
1111111_{B} \xrightarrow{5} 1010101_{B} \xrightarrow{3} 1011111_{B} \xrightarrow{*} 0100000_{B}=v
$$

Lemma 13. For $n \geqslant 6$, there exists at most two pairs of neighbors of vertex 0 in $F C Q_{n}$ that are not linked by a P_{3}.

Proof. Clearly, $N_{F C Q_{n}}(0)=N_{C Q_{n}}(0) \cup\left\{2^{n}-1\right\}$. Lemma 12 shows that there exists a P_{3} between vertices $2^{n}-1$ and v in $F C Q_{n}$ for every $v \in N_{F C Q_{n}}(0) \backslash\left\{1,2^{n}-1\right\}$. Since Lemma 9 has already shown that there exists at most one pair of vertices $u, v \in N_{C Q_{n}}(0)\left(=N_{F C Q_{n}}(0) \backslash\left\{2^{n}-1\right\}\right)$ without linking by a P_{3}, the result directly follows no matter whether there is a P_{3} or not between vertices 1 and $2^{n}-1$ in $F C Q_{n}$.

Lemma 14. For $n \geqslant 6$, there exists at least three pairs of neighbors of vertex 1 in $F C Q_{n}$ that are not linked by a P_{3}.

Proof. Since $n \geqslant 6$, by Lemma 4, we have $N_{0}(1)=0$, $N_{2}(1)=7, N_{3}(1)=11, N_{4}(1)=19, N_{5}(1)=35$ and $N_{*}(1)=2^{n}-2$. We claim that each of the pairs $(7,11)$, $(19,35)$ and $\left(0,2^{n}-2\right)$ does not be linked by a P_{3}. For the pair $(7,11)$, we suppose on the contrary that $F C Q_{n}$ contains the following path:

$$
\begin{gathered}
v\left(=0 \cdots 000111_{B}=7_{D}\right) \xrightarrow{\alpha} x \xrightarrow{\beta} y \xrightarrow{\gamma} \\
w\left(=0 \cdots 001011_{B}=11_{D}\right) .
\end{gathered}
$$

Note that $\alpha \neq \beta$ and $\beta \neq \gamma$. We consider the following cases.
Case 1: $\beta=$ "*". In this case, $\alpha, \gamma \in \mathbb{Z}_{n}$. Since $x=N_{\alpha}(v)$ and $y=N_{\gamma}(w)$, if $\alpha, \gamma \geqslant 1$ or $\alpha=\gamma=0$, then x and y have the same parity, and thus this contradicts that (x, y) is a complement edge. For $\alpha>\gamma=0$, since $w_{5} w_{4}=00$, it implies $y_{5} y_{4}=00$ and $x_{5} x_{4}=11$. Since $v_{5} v_{4}=00$ and $\alpha \neq \beta$, by Proposition 10, x and v are nonadjacent, a contradiction. A similar argument shows that the condition $\gamma>\alpha=0$ also leads to a contradiction.

Case 2: $\beta=0$. Clearly, either $x_{0}=\bar{y}_{0}=0$ or $y_{0}=\bar{x}_{0}=0$. Without loss of generality, we assume $x_{0}=0$ and $y_{0}=1$. Since $v_{0}=1$ and $x=N_{\alpha}(v)$, either $\alpha=0$ or $\alpha=" * "$. Since $\alpha \neq \beta$, we only need to consider $\alpha=" * "$. Thus, $v_{5} v_{4}=$ 00 implies $x_{5} x_{4}=y_{5} y_{4}=11$. Also, since $w_{5} w_{4}=00$ and $N_{\gamma}(y)=w$, by Proposition 10, (y, w) must be a complement edge (i.e., $\gamma=" * "$). However, this contradicts the fact that $y_{0}=w_{0}=1$.

Case 3: $\beta \in \mathbb{Z}_{n} \backslash\{0\}$. Clearly, either $x_{0}=y_{0}=0$ or $x_{0}=$ $y_{0}=1$. We first consider $x_{0}=y_{0}=0$. In this case, we have $\alpha, \gamma \in\{0, " * "\}$. If $\alpha=\gamma=0$ (respectively, $\alpha=\gamma=" * "$), then $x_{3} x_{2}=01$ and $y_{3} y_{2}=10$ (respectively, $x_{3} x_{2}=10$ and $y_{3} y_{2}=01$). If $\alpha=0$ and $\gamma=" * "$ (respectively, $\alpha=" * "$ and $\gamma=0$), then $x_{5} x_{4}=00$ and $y_{5} y_{4}=11$ (respectively, $x_{5} x_{4}=11$ and $\left.y_{5} y_{4}=00\right)$. Since (x, y) is not a complement edge, by Proposition 10, all of the above situations imply that x and y are nonadjacent, a contradiction. Next, we consider $x_{0}=y_{0}=1$. Since $v_{0}=w_{0}=1$, we have $\alpha, \gamma \geqslant 1$, and it further implies that $x_{1} x_{0}=y_{1} y_{0}=01$. Since (x, y) is not a complement edge, by Proposition 11, x and y are nonadjacent. This again leads to a contradiction.

For the pair $(19,35)$, we let $v=0 \cdots 010011_{B}=19_{D}$ and $w=0 \cdots 100011_{B}=35_{D}$. To show that v and w are not linked by a P_{3}, the proof is similar to the above argument by dealing with the second and the third bits of the labels of vertices (e.g. $v_{3} v_{2}$ and $w_{3} w_{2}$) instead of the fourth and the fifth bits (e.g. $v_{5} v_{4}$ and $w_{5} w_{4}$), and vice versa.

For the pair $\left(0,2^{n}-2\right)$, we suppose on the contrary that $F C Q_{n}$ contains the following path:

$$
\begin{gathered}
v\left(=0 \cdots 000000_{B}=0_{D}\right) \xrightarrow{\alpha} x \xrightarrow{\beta} y \xrightarrow{\gamma} \\
w\left(=1 \cdots 111110_{B}=2^{n}-2\right) .
\end{gathered}
$$

Note that $\alpha \neq \beta$ and $\beta \neq \gamma$. We first observe that a 0 -dimensional edge cannot occur immediately before or after a complement edge because $\left(0 \cdots 000000_{B}=0_{D}\right) \xrightarrow{0}$ $\left(0 \cdots 000001_{B}=1_{D}\right) \xrightarrow{*}\left(1 \cdots 111110_{B}=2^{n}-2\right)$ and $\left(0 \cdots 000000_{B}=0_{D}\right) \xrightarrow{*}\left(1 \cdots 111111_{B}=2^{n}-1\right) \xrightarrow{0}$ $\left(1 \cdots 111110_{B}=2^{n}-2\right)$ are paths of length two that connect v and w in $F C Q_{n}$. Moreover, we have $\alpha, \gamma \notin\{0, " * "\}$. If $\beta=" *$ ", we have $\alpha, \gamma \geqslant 1$. Since $x=N_{\alpha}(v)$ and $y=N_{\gamma}(w)$, x and y have the same parity, a contradiction. If $\beta=0$, then either $x_{0}=1$ or $y_{0}=1$, which implies that one of α and γ must be contained in the set $\{0, " * "\}$, a contradiction. Finally, we consider $\beta \in \mathbb{Z}_{n} \backslash\{0\}$. Since $\alpha, \gamma \geqslant 1$ and $\alpha \neq \beta$, the label of vertex y contains exactly two " 1 "s, which implies that y cannot be adjacent to w in $F C Q_{n}$, a contradiction.

Lemma 15. $F C Q_{n}$ is not vertex-transitive for $n \geqslant 6$.
Proof. This is an immediate result of Lemma 13 and Lemma 14.

According to Lemmas 5, 6, 7, 8 and 15, we complete the proof of Theorem 2.

IV. CONCLUDING REMARKS

An open question arises from this paper is as follows. Let $G=(V, E)$ be a graph and define a binary relation $\mathscr{R}=\{(u, v) \in V \times V: u$ and v have the same orbit $\}$. Obviously, \mathscr{R} is an equivalence relation on V. Let $\operatorname{Orb}(G)$ denote the number of orbits inhabited in a graph G (i.e., the number of equivalence classes of V by \mathscr{R}). As we have mentioned earlier, Liu et al. [12] showed that locally twisted cubes $L T Q_{n}$ always possess two orbits (i.e., $\operatorname{Orb}\left(L T Q_{n}\right)=2$) for $n \geqslant 4$. In addition, Kulasinghe and Bettayeb [11] showed that $\operatorname{Orb}\left(C Q_{n}\right) \neq 1$ if $n \geqslant 5$. In this paper, we prove that $\operatorname{Orb}\left(F C Q_{n}\right)=1$ if and only if $n \in\{1,2,4\}$. It would be an interesting question to determine $\operatorname{Orb}\left(C Q_{n}\right)$ or $\operatorname{Orb}\left(F C Q_{n}\right)$ for arbitrary n.

AckNOWLEDGEMENT

This work was partially supported by Ministry of Science and Technology of Taiwan under Grants MOST103-2221-E-131030, MOST103-2221-E-141-001 and MOST103-2221-E-141003

References

[1] S. Abraham and K. Padmanabhan, "The twisted cube topology for multiprocessors: a study in network asymmetry," J. Parallel Distrib. Comput., vol. 13, pp. 104-110, 1991.
[2] N. Adhikari and C.R. Tripathy, "The folded crossed cube: a new interconnection network for parallel systems," Int. J. Comput. Appl., vol. 4, pp. 43-50, 2010.
[3] S.B. Akers and B. Krishnamurthy, "A group-theoretic model for symmetric interconnection networks," IEEE Trans. Comput., vol. 38, pp. 555-565, 1989.
[4] N. Biggs, Algebraic Graph Theory (2nd ed.). Cambridge: Cambridge University Press, 1993.
[5] P. Cull and S.M. Larson, "The Möbius cubes," IEEE Trans. Comput., vol. 44, pp. 647-659, 1995.
[6] K. Efe, "A variation on the hypercube with lower diameter," IEEE Trans. Comput. 40, pp. 1312-1316, 1991.
[7] K. Efe, "The crossed cube architecture for parallel computation," IEEE Trans. Parallel Distrib. Syst., vol. 3, pp. 513-524, 1992.
[8] K. Efe, P.K. Blackwell, W. Slough, and T. Shiau, "Topological properties of the crossed cube architecture," Parallel Comput., vol. 20, pp. 1763-1775, 1994.
[9] A. El-Amawy and S. Latifi, "Properties and performance of folded hypercubes," IEEE Trans. Parallel Distrib. Syst., vol. 2, pp. 31-42, 1991.
[10] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics 207, New York: Springer-Verlag, 2001.
[11] P.D. Kulasinghe and S. Bettayeb, "Multiplytwisted hypercube with 5 or more dimensions is not vertex-transitive," Inform. Process. Lett., vol. 53, pp. 33-36, 1995.
[12] Y-J. Liu, J.K. Lan, W.Y. Chou, and C. Chen, "Constructing independent spanning trees for locally twisted cubes," Theoret. Comput. Sci., vol. 412, pp. 2237-2252, 2011.
[13] Y.Q. Zhang, "Folded-crossed hypercube: a complete interconnection network," J. System Architecture, vol. 47, pp. 917-922, 2002.

