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Abstract—Kulasinghe and Bettayeb [Inform. Process. Lett. 53
(1995) 33-36] proved that the crossed cube CQn (a synonym
called multiply twisted hypercube in that paper) fails to be vertex-
transitive for n ⩾ 5. In this paper, we study vertex-transitivity
on folded crossed cubes FCQn and show that FCQn is vertex-
transitive if and only if n ∈ {1, 2, 4}.
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nection networks.

I. INTRODUCTION

Interconnection networks are usually modeled as undi-
rected simple graphs G = (V,E), where the vertex set V
and the edge set E represent the sets of processing elements
and communication channels, respectively. One of the central
issues of an interconnection network is to consider the sym-
metry. Formally, an automorphism of a graph G = (V,E) is a
permutation ϕ on V such that the pair of vertices (u, v) form
an edge in E if and only if the pair (ϕ(u), ϕ(v)) also form
an edge in E. We say that two vertices v and w belong to
the same orbit if there is an automorphism ϕ of G such that
ϕ(v) = w.

Definition 1. (See [4], [10].) A graph G = (V,E) is vertex-
transitive (also known as vertex-symmetric) if for every two
vertices v, w ∈ V , there exists an automorphism of G which
maps v to w. That is, a vertex-transitive graph has just one
orbit.

Intuitively, a vertex-transitive graph looks the same when
we take a view from every vertex. The vertex-transitive
property is advantageous to the design and simulation of
some algorithms in graphs. Akers and Krishnamurthy [3]
showed that every Cayley graph over a general group is
vertex-transitive, and thus is regular. Accordingly, the lack
of vertex-transitivity for a class of graphs C does remove
C from the family of Cayley graphs. For example, Abraham
and Padmanabhan [1] and Cull and Larson [5] respectively
pointed out that topologies for multiprocessor systems such as
twisted cubes TQn and Möbius cubes MQn are possessed

of the property of asymmetry. In addition, Kulasinghe and
Bettayeb [11] showed that crossed cubes CQn fail to be vertex-
transitive for n ⩾ 5. Liu et al. [12] found out that although
locally twisted cubes LTQn are not vertex-transitive for n ⩾ 4,
these cubes are in possession of the property of even-odd-
vertex-transitivity, i.e., each of them has just two orbits for
which every pair of vertices with the same parity belong to
the same orbit.

In this paper, we investigate the vertex-transitivity of folded
crossed cubes (defined later in Section II) and show the
following result.

Theorem 2. The folded crossed cube FCQn is vertex-
transitive if and only if n ∈ {1, 2, 4}.

II. FOLDED CROSSED CUBES

The n-dimensional crossed cube CQn, proposed first by
Efe [6], [7], is a variant of an n-dimensional hypercube. One
advantage of CQn is that the diameter is only about one
half of the diameter of an n-dimensional hypercube. For more
properties of CQn, the reader can refer to [8], [11]

In this paper, we use a unique binary string
vn−1vn−2 · · · v1v0, which is also called a lable, of length n
to identify a vertex v in CQn. For conciseness, sometimes
labels of vertices are also represented by their decimal.
Two 2-bit binary strings v = v1v0 and w = w1w0

are pair-related, denoted by v ∼ w, if and only if
(v, w) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}. CQn is
the labeled graph with the following recursively fashion:

Definition 3. (See [6], [7].) CQ1 is the complete graph on
two vertices with labels 0 and 1. For n ⩾ 2, CQn consists of
two subcubes CQ0

n−1 and CQ1
n−1 such that every vertex in

CQ0
n−1 and CQ1

n−1 is labeled by 0 and 1 in its leftmost bit,
respectively. Two vertices v = 0vn−2 · · · v1v0 ∈ V (CQ0

n−1)
and w = 1wn−2 · · ·w1w0 ∈ V (CQ1

n−1) are joined by an edge
if and only if
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Fig. 1. Crossed cube CQ3 and folded crossed cube FCQ3, where vD (respectively, vB) denotes the decimal (respectively, binary) representation of the vertex
v.

(1) vn−2 = wn−2 if n is even, and

(2) v2i+1v2i ∼ w2i+1w2i for 0 ⩽ i < ⌊(n− 1)/2⌋.

Let Zn = {0, 1, . . . , n − 1}. Crossed cubes can also be
defined equivalently as follows:

Lemma 4. (See [6], [7].) Two vertices v = vn−1vn−2 · · · v0
and w = wn−1wn−2 · · ·w0 are joined by an edge in CQn if
and only if there exists an integer i ∈ Zn such that

(1) vn−1vn−2 · · · vi+1 = wn−1wn−2 · · ·wi+1,

(2) vi ̸= wi,

(3) vi−1 = wi−1 if i is odd, and

(4) v2j+1v2j ∼ w2j+1w2j for i ∈ Z⌊i/2⌋.

In the above lemma, v and w have the leftmost differing
bit at position i. In this case, v and w are said to be the i-
neighbors to each other, and for notational convenience we
write w = Ni(v) or v = Ni(w). Also, the edge (v, w) is
called an i-dimensional edge of CQn.

Inspired by the idea of El-Amawy and Latifi [9] that
proposed the so-called folded hypercubes to strengthen the
structure of hypercubes, a variation of crossed cubes was
first introduced in [13] as follows. The n-dimensional folded
crossed cube, denoted FCQn, is constructed from CQn

by adding a set of edges (v, w) with vn−1vn−2 · · · v1v0 =
w̄n−1w̄n−2 · · · w̄1w̄0 for 0 ⩽ v ⩽ (2n − 1). Hence, every
edge in such a set is called a complement edge. Similarly, we
use w = N∗(v) or v = N∗(w) to denote the adjacency of v
and w in this case. Fig. 3 shows crossed cube CQ3 and folded
crossed cube FCQ3, where solid lines indicate normal edges
and dashed lines represent complement edges. Refer to [2] for
more properties of FCQn.

Throughout this paper, we also use the following notations.
Let NG(v) denote the set of vertices adjacent to v in a graph
G, and we omit the subscript G if it is clear from the context.
We use Pn = v0 −→ v1 −→ · · · −→ vn to stand for a path of
length n starting from v0. Moreover, Pn = v0

d1−→ v1
d2−→

· · · dn−→ vn indicates that vertices vi−1 and vi are connected
by a di-dimensional edge or a complement edge if di = “ ∗ ”.
In particular, the notation Pw

n means that the path Pn does not
pass through a vertex w.

III. PROOF OF THE MAIN RESULT

Since FCQ1 and FCQ2 are isomorphic to complete graph,
respectively, with two vertices and four vertices (i.e., K2 and
K4), the following lemma is an immediate result.

Lemma 5. FCQ1 and FCQ2 are vertex-transitive.

Lemma 6. FCQ3 is not vertex-transitive.

Proof. Suppose on the contrary that FCQ3 is vertex-transitive,
i.e., there exists an automorphism ϕ of FCQ3 such that ϕ(1) =
0. From Figure 3(b), we can easily check N(1) = {0, 3, 6, 7}
and N(0) = {1, 2, 4, 7}. Let Gi be the subgraph of FCQ3

induced by N(i) for i = 0, 1. Clearly, G1 contains a path of
length 2 (i.e., the path 0 −→ 7 −→ 6), whereas G0 does not.
This contradicts that ϕ is an automorphism of FCQ3. □

Lemma 7. FCQ4 is vertex-transitive.

Proof. Let e be the identity permutation on the vertices of
FCQ4, i.e., e(i) = i for all i ∈ Z16. If ϕ is an automorphism
of G, then so is its inverse ϕ−1, and if ψ is a second automor-
phism of G, then the product ϕ ·ψ is an automorphism. Hence,
to show the result, we only need to provide automorphisms ϕi,
i = 1, 2, . . . , 15, such that ϕi(0) = i (i.e., ϕ−1

i ϕj maps vertex
i to vertex j for any i, j ∈ Z16). The following are the desired
automorphism:
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Fig. 2. Illustration of automorphisms of FCQ4.

ϕ1 = (1, 0, 3, 2, 7, 6, 5, 4, 11, 10, 9, 8, 13, 12, 15, 14)

(see Fig. 2(a) and 2(b) for illustration);

ϕ2 = (2, 3, 0, 1, 10, 11, 8, 9, 6, 7, 4, 5, 14, 15, 12, 13)

(see Fig. 2(a) and its flip on the diagonal D);

ϕ3 = (3, 2, 1, 0, 9, 8, 11, 10, 5, 4, 7, 6, 15, 14, 13, 12)

(apply ϕ1, see Fig. 2(b) and then flip on the diagonal D);

ϕ4 = (4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11)

(see Fig. 2(a) and its flip on the x-axis);

ϕ5 = (5, 4, 7, 6, 15, 14, 13, 12, 3, 2, 1, 0, 9, 8, 11, 10)

(apply ϕ1, see Fig. 2(b) and then rotate 90 degrees in
clockwise direction);

ϕ6 = (6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9)

(see Fig. 2(a) and its rotation of 90 degrees in clockwise
direction);

ϕ7 = (7, 6, 5, 4, 1, 0, 3, 2, 13, 12, 15, 14, 11, 10, 9, 8)

(apply ϕ1, see Fig. 2(b) and then flip on the x-axis);

ϕ8 = (8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7)

(see Fig. 2(a) and its flip on the y-axis);

ϕ9 = (9, 8, 11, 10, 3, 2, 1, 0, 15, 14, 13, 12, 5, 4, 7, 6)

(apply ϕ1, see Fig. 2(b) and then rotate 90 degrees in
counterclockwise direction);

ϕ10 = (10, 11, 8, 9, 2, 3, 0, 1, 14, 15, 12, 13, 6, 7, 4, 5)

(see Fig. 2(a) and its rotation of 90 degrees in counter-
clockwise direction);

ϕ11 = (11, 10, 9, 8, 13, 12, 15, 14, 1, 0, 3, 2, 7, 6, 5, 4)

(apply ϕ1, see Fig. 2(b) and then flip on the y-axis);

ϕ12 = (12, 13, 14, 15, 8, 9, 10, 11, 4, 5, 6, 7, 0, 1, 2, 3)

(see Fig. 2(a) and its flip on both x-axis and y-axis);

ϕ13 = (13, 12, 15, 14, 11, 10, 9, 8, 7, 6, 5, 4, 1, 0, 3, 2)

(apply ϕ1, see Fig. 2(b) and then flip on both x-axis and
y-axis);

ϕ14 = (14, 15, 12, 13, 6, 7, 4, 5, 10, 11, 8, 9, 2, 3, 0, 1)

(see Fig. 2(a) and its flip on the anti-diagonal D−1);

ϕ15 = (15, 14, 13, 12, 5, 4, 7, 6, 9, 8, 11, 10, 3, 2, 1, 0)

(apply ϕ1, see Fig. 2(b) and then flip on the anti-diagonal
D−1). □
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Lemma 8. FCQ5 is not vertex-transitive.

Proof. Suppose on the contrary that FCQ5 is vertex-transitive,
i.e., there exists an automorphism ϕ of FCQ5 such that ϕ(0) =
4. By Lemma 4 and the complement edges, we have N(0) =
{1, 2, 4, 8, 16, 31} and N(4) = {0, 5, 6, 12, 27, 28}. We prove
the lemma through the following two claims.

Claim 1. Let w ∈ N(4) be any vertex. There exist at least
three vertices v1, v2, v3 ∈ N(4)\{w} such that vi is connected
by a P 4

2 starting from w in FCQ5 for i ∈ {1, 2, 3}.

We directly expatiate on these paths as follows:

For w = 0, we have 0
∗−→ 31

4−→ 5, 0
1−→ 2

2−→ 6 and
0

3−→ 8
2−→ 12.

For w = 5, we have 5
4−→ 31

∗−→ 0, 5 ∗−→ 26
0−→ 27 and

5
2−→ 3

∗−→ 28.

For w = 6, we have 6
2−→ 2

1−→ 0, 6
∗−→ 25

1−→ 27 and
6

3−→ 14
1−→ 12.

For w = 12, we have 12
2−→ 8

3−→ 0, 12 1−→ 14
3−→ 6 and

12
4−→ 20

3−→ 28.

For w = 27, we have 27
0−→ 26

∗−→ 5, 27 1−→ 25
∗−→ 6 and

27
2−→ 29

0−→ 28.

For w = 28, we have 28
∗−→ 3

2−→ 5, 28 3−→ 20
4−→ 12 and

28
0−→ 29

2−→ 27.

Claim 2. Let w = 1 ∈ N(0). There exist at most two vertices
v1, v2 ∈ N(0)\{1} such that vi is connected by a P 0

2 starting
from w in FCQ5 for i ∈ {1, 2}.

By Lemma 4, we observe that

N(1) \ {0} = {3, 7, 11, 19, 30}.

Moreover,
N(3) \ {1} = {2, 5, 9, 17, 28},

N(7) \ {1} = {5, 6, 13, 24, 29},

N(11) \ {1} = {9, 10, 13, 20, 25},

N(19) \ {1} = {12, 17, 18, 21, 25},

and
N(30) \ {1} = {6, 22, 26, 28, 31}.

Thus, we can check that only the two vertices 2, 31 ∈ N(0) \
{1} are connected by a P 0

2 starting from w, i.e., 1 1−→ 3
0−→ 2

and 1
∗−→ 30

0−→ 31.

According to the two claims, it contradicts that ϕ is an
automorphism of FCQ5. □

In what follows, we will consider the vertex-transitivity on
FCQn with higher dimension, i.e., n ⩾ 6. Before this, we
need some auxiliary properties.

Lemma 9. (See Lemma 5 in [11].) For n ⩾ 6, there exists at
most one pair of neighbors of vertex 0 in CQn that are not
linked by a P3.

By Lemma 4, the following two properties can be obtained
directly from the adjacency of vertices in FCQn.

Proposition 10. For v, w ∈ V (FCQn), if v2k+1v2k = 01 and
w2k+1w2k = 10 or v2k+1v2k = 00 and w2k+1w2k = 11 for
some k ∈ Z⌊n/2⌋, then v and w cannot be adjacent with the
exception of (v, w) being a complement edge.

Proposition 11. For v, w ∈ V (FCQn), if v2k+1v2k =
w2k+1w2k = 01 or v2k+1v2k = w2k+1w2k = 11 for some
k ∈ Z⌊n/2⌋, then v and w cannot be adjacent via an edge
with dimension i for i ⩾ 2k or a complement edge.

Lemma 12. For n ⩾ 6, every vertex v ∈ N(0) \ {1, 2n − 1}
in FCQn is connected by a P3 starting from 2n − 1.

Proof. Clearly, v ∈ {2i : 1 ⩽ i ⩽ n}. We expatiate on these
paths as follows. If v = 21, we have

(2n − 1)
2−→ (2n − 22 − 21 − 1)

∗−→ (22 + 21)
2−→ 21.

If v = 2i for even i ⩾ 2, we have

(2n−1)
i−→ (2n−2i−

i/2∑
j=1

22j−1−1)
i−1−−→ (2n−2i−1)

∗−→ 2i.

If v = 2i for odd i ⩾ 3, we have

(2n−1)
i−→ (2n−2i−

⌊i/2⌋∑
j=1

22j−1−1)
i−2−−→ (2n−2i−1)

∗−→ 2i.

□

For example, we consider some vertices

v ∈ N(0) \ {1, 27 − 1}

in FCQ7. If v = 2, we have

1111111B
2−→ 1111001B

∗−→ 0000110B
2−→ 0000010B = v.

If v = 26, we have

1111111B
6−→ 0010101B

5−→ 0111111B
∗−→ 1000000B = v.

If v = 25, we have

1111111B
5−→ 1010101B

3−→ 1011111B
∗−→ 0100000B = v.
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Lemma 13. For n ⩾ 6, there exists at most two pairs of
neighbors of vertex 0 in FCQn that are not linked by a P3.

Proof. Clearly, NFCQn(0) = NCQn(0)∪{2n−1}. Lemma 12
shows that there exists a P3 between vertices 2n − 1 and v in
FCQn for every v ∈ NFCQn(0)\{1, 2n−1}. Since Lemma 9
has already shown that there exists at most one pair of vertices
u, v ∈ NCQn(0) (= NFCQn(0) \ {2n − 1}) without linking
by a P3, the result directly follows no matter whether there is
a P3 or not between vertices 1 and 2n − 1 in FCQn. □

Lemma 14. For n ⩾ 6, there exists at least three pairs of
neighbors of vertex 1 in FCQn that are not linked by a P3.

Proof. Since n ⩾ 6, by Lemma 4, we have N0(1) = 0,
N2(1) = 7, N3(1) = 11, N4(1) = 19, N5(1) = 35 and
N∗(1) = 2n − 2. We claim that each of the pairs (7, 11),
(19, 35) and (0, 2n − 2) does not be linked by a P3. For the
pair (7, 11), we suppose on the contrary that FCQn contains
the following path:

v(= 0 · · · 000111B = 7D)
α−→ x

β−→ y
γ−→

w(= 0 · · · 001011B = 11D).

Note that α ̸= β and β ̸= γ. We consider the following cases.

Case 1: β = “∗”. In this case, α, γ ∈ Zn. Since x = Nα(v)
and y = Nγ(w), if α, γ ⩾ 1 or α = γ = 0, then x and y
have the same parity, and thus this contradicts that (x, y) is a
complement edge. For α > γ = 0, since w5w4 = 00, it implies
y5y4 = 00 and x5x4 = 11. Since v5v4 = 00 and α ̸= β, by
Proposition 10, x and v are nonadjacent, a contradiction. A
similar argument shows that the condition γ > α = 0 also
leads to a contradiction.

Case 2: β = 0. Clearly, either x0 = ȳ0 = 0 or y0 = x̄0 = 0.
Without loss of generality, we assume x0 = 0 and y0 = 1.
Since v0 = 1 and x = Nα(v), either α = 0 or α = “∗”. Since
α ̸= β, we only need to consider α = “ ∗ ”. Thus, v5v4 =
00 implies x5x4 = y5y4 = 11. Also, since w5w4 = 00 and
Nγ(y) = w, by Proposition 10, (y, w) must be a complement
edge (i.e., γ = “ ∗ ”). However, this contradicts the fact that
y0 = w0 = 1.

Case 3: β ∈ Zn \{0}. Clearly, either x0 = y0 = 0 or x0 =
y0 = 1. We first consider x0 = y0 = 0. In this case, we have
α, γ ∈ {0, “ ∗ ”}. If α = γ = 0 (respectively, α = γ = “ ∗ ”),
then x3x2 = 01 and y3y2 = 10 (respectively, x3x2 = 10 and
y3y2 = 01). If α = 0 and γ = “ ∗ ” (respectively, α = “ ∗ ”
and γ = 0), then x5x4 = 00 and y5y4 = 11 (respectively,
x5x4 = 11 and y5y4 = 00). Since (x, y) is not a complement
edge, by Proposition 10, all of the above situations imply that
x and y are nonadjacent, a contradiction. Next, we consider
x0 = y0 = 1. Since v0 = w0 = 1, we have α, γ ⩾ 1, and it
further implies that x1x0 = y1y0 = 01. Since (x, y) is not a
complement edge, by Proposition 11, x and y are nonadjacent.
This again leads to a contradiction.

For the pair (19, 35), we let v = 0 · · · 010011B = 19D
and w = 0 · · · 100011B = 35D. To show that v and w are
not linked by a P3, the proof is similar to the above argument
by dealing with the second and the third bits of the labels of
vertices (e.g. v3v2 and w3w2) instead of the fourth and the
fifth bits (e.g. v5v4 and w5w4), and vice versa.

For the pair (0, 2n − 2), we suppose on the contrary that
FCQn contains the following path:

v(= 0 · · · 000000B = 0D)
α−→ x

β−→ y
γ−→

w(= 1 · · · 111110B = 2n − 2).

Note that α ̸= β and β ̸= γ. We first observe that a
0-dimensional edge cannot occur immediately before or af-
ter a complement edge because (0 · · · 000000B = 0D)

0−→
(0 · · · 000001B = 1D)

∗−→ (1 · · · 111110B = 2n − 2) and
(0 · · · 000000B = 0D)

∗−→ (1 · · · 111111B = 2n − 1)
0−→

(1 · · · 111110B = 2n−2) are paths of length two that connect
v and w in FCQn. Moreover, we have α, γ /∈ {0, “ ∗ ”}. If
β = “∗”, we have α, γ ⩾ 1. Since x = Nα(v) and y = Nγ(w),
x and y have the same parity, a contradiction. If β = 0, then
either x0 = 1 or y0 = 1, which implies that one of α and γ
must be contained in the set {0, “∗”}, a contradiction. Finally,
we consider β ∈ Zn \ {0}. Since α, γ ⩾ 1 and α ̸= β, the
label of vertex y contains exactly two “1”s, which implies that
y cannot be adjacent to w in FCQn, a contradiction. □

Lemma 15. FCQn is not vertex-transitive for n ⩾ 6.

Proof. This is an immediate result of Lemma 13 and
Lemma 14. □

According to Lemmas 5, 6, 7, 8 and 15, we complete the
proof of Theorem 2.

IV. CONCLUDING REMARKS

An open question arises from this paper is as follows.
Let G = (V,E) be a graph and define a binary relation
R = {(u, v) ∈ V × V : u and v have the same orbit}. Obvi-
ously, R is an equivalence relation on V . Let Orb(G) denote
the number of orbits inhabited in a graph G (i.e., the number
of equivalence classes of V by R). As we have mentioned
earlier, Liu et al. [12] showed that locally twisted cubes
LTQn always possess two orbits (i.e., Orb(LTQn) = 2) for
n ⩾ 4. In addition, Kulasinghe and Bettayeb [11] showed
that Orb(CQn) ̸= 1 if n ⩾ 5. In this paper, we prove that
Orb(FCQn) = 1 if and only if n ∈ {1, 2, 4}. It would be an
interesting question to determine Orb(CQn) or Orb(FCQn)
for arbitrary n.
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