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Abstract—Echo State Network (ESN) is a special type of
neural network with a randomly generated structure called the
reservoir. The performance of ESN is sensitive to the reservoir
parameters, which have to be tuned for best performance. Tuning
of the reservoir parameters using evolutionary algorithms can be
slow and produce inconsistent results. In this paper, we present
a simple method for generating reservoirs based on templates
that makes the reservoir matrices deterministic with respect to
the parameters. Compared with the traditional method where the
reservoir matrices are random, tuning of the reservoir parameters
with an evolutionary algorithm needs less time, less number of
cost function evaluations, and produces more reliable results using
the proposed method.

I. INTRODUCTION

Echo State Network (ESN) is a special type of recurrent
neural network proposed by [1]. In order to obtain good results,
the reservoir of the ESN structure must be generated with
appropriate parameters [2], which has to be tuned by trial and
error. For this reason, there have been interests in automating
reservoir tuning by some sort of optimization. One common
approach is to use evolutionary algorithms1 to optimize the
reservoir parameters. The problems with evolutionary algo-
rithms is they are slow to run, and as will be seen, they are
prone to noisy cost function caused by generating reservoirs
randomly, producing inconsistent tuning results. In this paper,
we present a simple method for generating reservoirs based
on templates that make them effectively deterministic, leading
to significant speedup of the average tuning times and more
consistent tuning results.

A. Echo State Network

The basic idea of ESN is to use a large, recursive neural
network excited by the input signal as a “reservoir”. The state
of the reservoir becomes the input to the “readout” layer,
generally a linear combiner, that produces the final output. The
entire structure is trained by adapting only the weights of the
output layer, while the weights of the reservoir are randomly
generated and held fixed, making training2 of ESN a convex
problem that can be solved by simple linear regression. This

1These derivative-free global optimization algorithms are used for two
reasons, the output of ESN is not differentiable with respect to the reservoirs
parameters, and the error surface of these parameters is generally nonconvex

2Not to be confused with “tuning” which means adapting the parameters
of the reservoir. “Training” means to adapt the weights of the output layer.

property had made ESN popular for modeling/identification
of nonlinear dynamic systems [3], or prediction of signals
generated by nonlinear processes/chaotic signals [4].

The ESN structure is shown in Figure 1. The reservoir is
characterized by the input weight matrix Win and the internal
weight matrix W. The output layer is characterized by the
weight vector wout (assuming single output for simplicity).
Computation is performed in two steps: first the state of the

reservoir readout

Fig. 1. Basic ESN structure. The circles represent neurons, generally with
hyperbolic tangent activation function. The input weight matrix Win is dense
- every input is connected to every neuron. The internal matrix W may be
dense or sparse. Both of these matrices are randomly generated. The output
weight vector wout (the readout) is dense - every neuron in the reservoir feeds
the output layer. The output y is a simple weighted sum of the reservoir state
(the output of each neuron at time k). During training, only wout is adjusted
to make y closer to the target signal.

reservoir is updated, and then the updated state vector is fed
into the output layer to produce the final output. The state
update equation is given by3

x(k) = tanh [Wx(k − 1) +Winu(k)] + εn, (1)

where x(k−1) is the previous state vector, x(k) is the updated
state vector, u(k) is the input vector and εn is the optional
noise term. The output equation is given by

y(k) = wT
outx(k). (2)

Batch training of the readout, given input u(k) and target
signal t(k) both of length L is done by solving the following
over-determined linear system in the least square sense

3For simplicity, we consider this simple state update in the original
introduction of ESN [1] without the “leaky” parameter.
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Pwout = t, (3)

where t is a vector that holds all the L target signal samples
and

P =


x(1)T

x(2)T

...
x(L)T

 ∈ L×N, (4)

where each row of P is the reservoir state vector at each time
step and N denotes the reservoir size. The solution of (3) is
usually obtained by ridge regression.

B. Generating The Reservoir

The parameters involved in generating the individual
weights of Win and W are:

1) The distribution from which to draw the elements of
Win and W.

2) The spectral radius4 of W, denoted as ρ̃.
3) The scaling of the input weight matrix Win, denoted

as s.
4) The reservoir size N .
5) The sparseness of Win.

Once the five parameters have been selected, reservoir gener-
ation proceed as follows:

1) Sample the nonzero elements of Win and W from
the chosen distribution.

2) Scale the input matrix: Win = sWin
3) Let ρ(W) denote the spectral radius of the matrix

W. Scale W to have a specific spectral radius by:
W = ρ̃W/ρ(W)

The scaled Win and W are respectively the input and the
internal reservoir matrices that will be used in the ESN model.
Note that compared to regular recurrent neural networks, the
reservoir size N is quite large, with values that can often be
in the hundreds or even thousands.

II. TUNING RESERVOIR PARAMETERS WITH
EVOLUTIONARY ALGORITHMS

A. The Choice of The Parameters to Optimize

Out of the above five reservoir parameters, some study have
proposed to optimize all of them [5], some have even proposed
optimizing the joint parameter space between the reservoir and
the readout weights [6], [7]. This is not a good approach, as
evolutionary algorithms become less effective as the dimension
of the parameter space increases. The chance of finding the
optimal region becomes smaller, and larger population size and
longer running time are needed. It is better for both efficiency
and computation to concentrate only on the parameters that
have strong impact on the performance of ESN.

The distribution to be sampled from has virtually no impact
and can be chosen as the convenient [−1, 1]. Sparse W
usually performs just slightly better than dense W. The main

4The spectral radius of a matrix is the maximum of the magnitudes of its
eigenvalues.

total # of training samples

Ltrain Ltest

1. Generate Win, W.
2. For all samples:
   Update x using (1)
3. train wout by solving (3)

1. For all samples: 
   Compute y using (1,2)
2. evaluate J using (5)

utrain, ttrain utest,ttest

Fig. 2. An illustration of how the cost function for reservoir tuning is
evaluated. The available samples are split into two blocks. The first block
is used to train the readout weights, and the second block is used to evaluated
the performance of the trained ESN structure.

advantage of using sparse W is less computation, so highly
sparse W is desired. However, if the sparseness is above 90%,
eigenvalue calculation for W may sometime fail to converge.
So as a rule of thumb, if sparse W is used, the sparseness
should be set to no more than 90%. The reservoir size N
is not really a parameter, but a design choice. It is trade-off
between better performance from a larger reservoir, against
available training data and computational resource. The critical
parameters to optimize are the input scaling s and the spectral
radius ρ̃, because they have strong impact on the performance
[8].

B. The Cost Function for Reservoir Tuning

In this section we will drop the time index k to avoid
cluster. Regardless of what evolutionary algorithm is used,
the mechanism of evaluating the cost function is the same.
This is illustrated in Figure 2. At each point in the reservoir
parameter space that the algorithm is searching, the parameters
at that point is used to generate the reservoir matrices Win,W.
The reservoir is then fed with utrain and the state vector x
is calculated at each time step to construct the matrix P,
concurrently, each sample of ttrain is stored in the vector t.
Once all the Ltrain samples had been used, the readout is trained
by solving (3). The performance of the trained ESN structure
is then evaluated by feeding it with utest, calculating ytest, and
then comparing ytest versus ttest by some sort of error measure.
Thus we can write the cost function as

J(v) = f(ytest, ttest), (5)

where v denote the parameter vector at a point and ytest is
obtained as above. The function f can be the mean square
error (MSE) or its normalized version. The reservoir tuning
problem can then be posed as follows

argmin
v

[J(v)] . (6)

Practically, it is better to use as f the normalized mean
square error (NMSE) or the normalized root mean square error
(NRMSE). The reason being because the value of J will fall
in the same range across different input and target signals,
allowing one to set a fixed tolerance value as the termination
criterion for the evolutionary algorithm.

Upon casual inspection, the cost function (5) may seem
simple to evaluate, just train and evaluate ESN at each point x
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that the algorithm calls for. However, there is a pitfall. Due
to the fact that generating the reservoir involves sampling
from a random distribution, even with exactly the same set
of parameters, different reservoirs will be generated each
time. These different reservoirs can have significantly different
performance [9]. This means that J(v) will be different each
time it is evaluated even if v remains the same, i.e., (5)
evaluated in this manner is noisy. This causes convergence
to take longer (larger number of cost function evaluations
needed), or sometimes mis-convergence altogether.

Moreover, it can be seen from the steps of generating
reservoirs that eigenvalue calculation of a N × N matrix is
needed to determine ρ(W). This needs to be computed every
time J is called, resulting in a lot of overhead. In the next
section, we present a simple method that eliminates both noisy
J and overhead from repeated eigenvalue calculations.

III. GENERATING RESERVOIRS USING TEMPLATES

We propose the use of “templates” for generating reser-
voirs. The idea is to randomly generate reservoir matrices
only once, store these matrices in memory and modify them
in a deterministic way based on s and ρ̃. That is, before
starting reservoir tuning, generate “template matrices” Ŵ and
Ŵin by sampling from the chosen distribution, calculate the
spectral radius ρ(Ŵ) and keep the result in memory. Then
these templates can be transformed to actual reservoir matrices
with input scaling s and spectral radius ρ̃ simply by

W =
Ŵ

ρ(Ŵ)
ρ̃ W,Ŵ ∈ N ×N (7)

and
Win = sŴin Win,Ŵin ∈ N × l, (8)

where Ŵ and Ŵin are respectively the template for the input
matrix and the internal matrix and l is the dimension of the
input signal. It is clear that this approach only works if we
limit the reservoir parameters to only s and ρ̃. There is no
way to make a template if any of the remaining 3 parameters
can change.

There are two main advantages to this approach. First,
since the templates are generated only once before we start the
evolutionary algorithm, for any s, ρ̃, exactly the same W,Win
will be generated. This completely eliminates the noise in the
value of J , since the reservoir matrices are no longer random,
but deterministic transformations of two matrices that already
exist. The second advantage is that eigenvalue calculation has
to be performed only once on Ŵ, instead of every time J is
called, on W. This saves a lot of computation since eigenvalue
decomposition of a large matrix is an expensive operation.
Algorithm 1 and 2 compare traditional reservoir generation vs.
our proposed template method. It can be seen that in Algorithm
2, the return matrices are deterministic with respect to the
parameters s, ρ̃ being optimized. No random sampling and no
eigenvalue decomposition are performed inside the procedure.

IV. EXPERIMENTAL RESULTS

We simulated two problems in order to confirm the ef-
fectiveness of the proposed method. The first one is the

Algorithm 1 Generating Reservoirs without Templates
1: procedure GENRESERVOIR(s, ρ̃)
2: Generate W,Win
3: Calculate ρ(W)
4: Win ← sWin
5: W← W

ρ(W) ρ̃
6: return W,Win
7: end procedure

Algorithm 2 Generating Reservoirs Using Templates

1: procedure GENRESERVOIR(s, ρ̃,Ŵin,Ŵ, ρ(Ŵ))
2: Win ← sŴin

3: W← Ŵ

ρ(Ŵ)
ρ̃

4: return W,Win
5: end procedure

identification of a 30th order nonlinear recurrent system, called
the “narma30” dataset in [10]. The second one is the prediction
of a laser time-series from the Santa-Fe time-series compe-
tition [11]. The two problems are referred to as “narma30”
and “laser” respectively. We choose the Covariance Matrix
Adaptation Evolution Strategy (CMAES) algorithm [12] over
other evolutionary algorithm because it is effective with small
population size λ (default value of 4 + 3 log10(D) vs. 3D
or 10D for most evolutionary algorithms). Moreover, it has
only a single parameter to set, the initial standard deviation
of the (initially diagonal) Covariance matrix σ. The other
“internal” parameters are determined by the algorithm itself.
The CMAES algorithm works by creating a multi-variate
Gaussian distribution with mean located at the current best
point found, drawing test points to evaluate from this pdf and
choosing the best one to be the mean of the next iteration’s
pdf, while concurrently adapting the Covariance matrix of
the distribution such that its shape matches the shape of the
error surface around the current best point. For an in-dept
introduction to CMAES, please refer to the tutorial article in
[13]

We set the reservoir size to be N = 100 with dense W and
Ltrain = Ltest = 500. For the error measure f in (5), we used
the NRMSE. For each problem we simulated 50 independent
tuning trials of both traditional reservoir generation and our
template-based method. The parameter and options of the
CMAES were set as follows: the starting point was s = 0.5
and ρ̃ = 0.8, the initial variance was 0.66, the tolerance in the
cost function value for terminating the algorithm was 0.05, the
population size was 5 and maximum number of iterations to
run was 200. The bounds on the search space was [0.01, 1] for
s and [0.1, 1] for ρ̃.

Figure 3 compares the results for the “narma30” problem,
with and without using templates. The error surface contour
plots were generated by calculating J at 10,000 points in the
parameter space. The crosses indicate the optimal paramters
found by the CMAES algorithm for each trial. Figure 4 shows
the zoomed in of the region around the bottom right hand
corner of Figure 3. The zoomed-in figure reveals that the global
minimum region is consistently found only when templates are
used.

19th International Computer Science and Engineering Conference (ICSEC) 
Chiang Mai, Thailand, 23-26 November, 2015 
 



Figure 5 shows the results for the “laser” problem. In this
case it can be seen that the error surface is more challenging
than the previous problem, it has more variation and the
region with the minimum NRMSE is disjoint. Using templates,
the region with the minimum NRMSE was still consistently
found, only two crosses lie outside the region. Without using
templates however, the best parameters found are scattered all
over the parameter space. This shows that the noise in the
cost function values described in Section 2B affects the ability
of evolutionary algorithms to effectively search the parameter
space.

From the results shown by Figures 4 and 5, it can be
seen that the proposed template-based reservoir generation
leads to much better tuning result. The final location in
the parameter space found by the CMAES algorithm were
consistently located inside the global minimum region of both
test problems.

A. Statistical Analysis of Average Tuning Time And Number
of Function Evaluations

Besides from better and more consistent tuning results, the
use of templates also resulted in significant speedup in the av-
erage tuning time. We statistically compared the average times5

in seconds it took to complete tuning, and the average number
of cost function evaluation (feval) by using independent two-
samples t-test with the following hypothesis

H0 : µttemplate = µttraditional

HA : µttemplate < µttraditional

, (9)

and
H0 : µfevaltemplate = µfevaltraditional

HA : µfevaltemplate < µfevaltraditional

, (10)

The statistical analysis result is shown in Table I. In terms of
average tuning time, the use of templates resulted in statisti-
cally significant speedup for both problems, especially for the
laser problem where the speedup was one order of magnitude.
In terms of the number of cost function evaluations, there
was no statistically significant difference between our method
and the traditional method for the narma30 problem. For the
laser problem, the average number of function evaluations
was reduced by about 5 times. This shows that our proposed
method can achieve large reduction in both tuning time and
number of function evaluations. The reason for the large
reduction of the number function evaluations needed for the
laser problem when templates are applied is likely due to
the fact that the error surface of the laser problem has more
variation compared to that of the narma30 problem, which is
mostly flat. On a flat error surface, the noise from evaluating
the cost function without using templates tends to cancel out
from point to point since it is a zero mean random variable.
However, on an error surface with more variations, the noise
do not cancel, so the cost function remain noisy. It is normal
for evolutionary algorithms to need more function evaluations
on noisy surfaces than a noise-free ones.

The computational time for generating the templates can
be broken down as follows: the time it takes to sample the
elements of W and Win and the time it takes to perform

5Of course, running in the same environment and on the same machine.

eigenvalue decomposition on W. The first one is essentially
constant time, while the second one takes less than one second
even with reservoir sizes of thousands of neurons, thus the time
it takes the generate the templates is less than one second in our
set of tests. Compared to the reduction in tuning time achieved
by the use of templates which can be an order of magnitude as
shown by Table I, the time it takes to generate the templates
themselves is very short and well worth the effort.

TABLE I. STATISTICAL ANALYSIS AVERAGE TUNING TIME AND
NUMBER OF FUNCTION EVALUATIONS.

Average tuning time (s.)
template traditional p-value

narma30 2.63 7.36 9.51E−9

laser 5.67 36.94 < 2.2E−16

Average number of function evaluations
template traditional p-value

narma30 127.32 113.46 0.8726
laser 118.62 539.52 1.83E−15

V. CONCLUSION

In this paper we have presented a method for generating
reservoirs based on templates that eliminates the noise in the
cost function for reservoir tuning, as well as the need to
repeatedly solve large eigenvalue problems. This was achieved
by pre-generating templates for the reservoir matrices, and
scaling them each time the cost function is evaluated, instead of
generating the reservoir matrices from scratch. In this manner,
reservoir matrices become deterministic for a given set of
templates, and thereby eliminates noise in the cost function, as
well as reducing the computational overhead of each function
call.

Experiments show that our approach leads to better and
more consistent tuning results, as well as 3-7 folds speedup
in the average tuning time, especially for a problem that
has a complicated error surface where the average number
of function evaluation needed was reduced by almost five
times. Further work includes more comprehensive evaluations
by conducting simulations on more test problems, as well as
for different reservoir sizes and training signals lengths.
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Fig. 3. The best parameters found (the crosses) by the CMAES algorithm over 50 independent trials for the “narma30” problem, (left) using our proposed
template method and (right) without using template. It seems that in both cases the region with the minimum NRMSE was consistently found, but see Figure 4
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psych.stanford.edu/ãndreas/Time-Series/SantaFe.html

[12] N. Hansen, “Cma-es - a stochastic second-order method for function-
value free numerical optimization,” October 2011. [Online]. Available:
https://www.lri.fr/ hansen/msrc-cmaes-nov-2011.pdf

[13] ——, “The cma evolution strategy: A tutorial,” Vu le, vol. 29, 2005.

19th International Computer Science and Engineering Conference (ICSEC) 
Chiang Mai, Thailand, 23-26 November, 2015 
 



0.2 0.4 0.6 0.8 1.0
spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

in
p
u
t 

sc
a
lin

g

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

R
M

S
E

0.2 0.4 0.6 0.8 1.0
spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

in
p
u
t 

sc
a
lin

g

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
R

M
S
E

Fig. 5. The best parameters found (the crosses) by the CMAES algorithm over 50 independent trials for the “laser” problem, (left) using our proposed template
method and (right) without using template. The error surface is more challenging than the previous problem, it has more variation and the region with the
minimum NRMSE is disjoint. Using templates, the region was still consistently found. Without templates however, the best parameters found are scattered all
over the parameter space.
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