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Abstract—Transcription start sites (TSSs) are crucial 
information that determines exact location of genes. However, 
identifying TSSs in vitro is costly and time consuming. Therefore, 
there are many attempts to predict TSSs in silico, but they were 
low in accuracy. Herein, we observed that the distribution of 
A/T-singletons in the whole genome can be employed to detect the 
presence of TSS. We found that the distribution pattern is clearly 
distinct between regions with TSS and without TSS. To assess 
whether the distribution of A/T-singletons can help detect TSS, 
we developed a two-step algorithm to detect the specific 
distribution pattern. Our method was evaluated in terms of 
sensitivity, specificity and accuracy. The results show that the 
distribution of A/T-singletons is a useful feature for identifying 
TSSs. However, using this feature alone is not sufficient to 
identify all TSSs correctly. Combining this feature with other 
existing methods should improve their efficacy significantly. 
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I. INTRODUCTION 
Gene expression, the process that DNA directs protein 

synthesis, requires two major steps—transcription and 
translation. Transcription produces messenger RNA (mRNA) 
from DNA, and translation translates mRNA into a protein [1]. 
Transcription begins when the enzyme called RNA 
polymerase II (RNA pol II) binds to a region of DNA located 
upstream of a gene and nearby a transcription start site (TSS), 
a point where transcription start. These regulatory regions are 
called promoters. After that, DNA is unwound. This allows 
RNA pol II to read the template sequence and synthesize RNA 
by adding nucleotides to the 3’ end of the RNA molecule. This 
process continues until a terminator sequence has been 
transcribed [2]. The term “upstream/downstream” is used to 
described a relative position before/after a certain landmark 
e.g. TSS. Transcriptions take place in a 5’ to 3’ direction; thus, 
upstream and downstream is toward the 5’ end and 3’ end of 
an RNA molecule respectively. 

Based on the knowledge of transcription process, the 
earlier studies use the location of promoters to predict TSSs as 
they are nearby [3]. For example, some computer programs 
locate the TATA box (a DNA sequence found in the promoter 
regions), which is 25–35 bases before TSS [4]. Some studies 
used statistical theories or machine learning, e.g. neural 

network, genetic algorithm, or linear discriminant function [5]. 
For example, AMOSA used linear discriminant function to 
find TSSs [6]. Although these programs could identify the 
TSS, they were low in accuracy. Wang et al. (2008) reported 
that AMOSA still has accuracy problem [6]. Won et al. (2008) 
compared many programs and found that there is no best 
program. Therefore, they combine the results of existing 
predictors by using three ensemble methods—the majority 
voting, the weighted voting and the Bayesian approach [5]. 

Besides employing promoter sequence, we hypothesized 
that the distribution of adenine (A) could be utilized to 
identify TSS based on the work of Aporntewan et al. (2013). 
They found that A-repeats do not randomly distribute around 
TSS, but they have an interesting pattern [7]. Repeated 
sequences are sequences that exist in many copies. A-repeat, 
an adenine base that occurs consecutively, is one example of 
repeated sequences (non-consecutive A is called A-
singletons). Their results show that, in human genome, the 
distribution of A- and T-repeats is uniform in the upstream 
and downstream of TSS but sharply drops at TSS. The 
normalized numbers of A- and T-repeats are the lowest 
exactly at the bin that contains TSS. In addition, the 
distribution of A- and T-repeats in the upstream and 
downstream of TSS is not symmetrical. We extended the 
findings of Aporntewan et al. (2013) by studying the 
distribution of A/T singletons and observing that the specific 
pattern of distribution should help identify TSS. Therefore, it 
is of our interest to investigate at what level this feature solely 
can detect TSSs. We developed an algorithm to detect the 
specific pattern of A/T-singletons distribution and assessed the 
performance by comparing its sensitivity, specificity and 
accuracy with Promoter2.0 [8]. 

II. MATERIALS AND METHODS 

A. Human Whole Genome Data 
We downloaded human genome sequence build 37 (hg 19) 

from UCSC Genome Browser database for studying the 
characteristics of A- and T-singletons around TSS regions and 
non-TSS regions. 

We tested our method on human genome build 38 (hg 38) 
downloaded from UCSC Genome Browser as well. In 
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addition, we downloaded human TSSs build 38 from UCSC 
database via Table Browser (https://genome.ucsc.edu/cgi-
bin/hgTables?org=human). 

B. The Distribution of A- and T-singletons/repeats 
We investigated whether the distribution of A-singletons 

and T-singletons (length = 1) around TSS is similar to the 
distribution of A- and T-repeats (length = 5 to 30) as reported 
by Aporntewan et al. (2013). We used the same bin structure 
as in the previous study, namely, 10,000 bases upstream and 
downstream of each TSS (20,000 bases for each TSS) were 
obtained. The 20,000-base-long sequences were divided into 
25 bins; each bin was of size 800 bases. The bin structure is 
shown in Fig. 1. However, for each bin and for each sequence, 
we simply count the number of A’s or T’s as shown in Fig. 2. 
The number of A in each bin is then normalized by the 
number of genes to obtain the distribution of A-singletons and 
do the same thing for T. In addition, the distribution of A/T-
singletons is also studied. For A/T-singletons, the number of 
both A and T are counted in each bin and then normalized by 
the number of genes. 

 

Fig. 1. Bin structure around TSS. There are 25 bins. Each bin contains 800 
base pair (bp). The TSS is centered in the 13th bin. 

 

Fig. 2. Illustration of A-singletons counting. Eight bases upstream and 
downstream of TSSs of 4 genes were made up. The 16 bases were divided 
into four bins, each with size of four bases. Frequency (Freq) of A-singletons 
are shown at the bottom for each bin. The mean number of A-repeats (the 
normalized value) are 7/4 = 1.75, 5/4 = 1.25, 4/4 = 1.00, and 2/4 = 0.50 from 
the leftmost bin to the rightmost bin. 

C. The Proposed Algorithm 
The algorithm consists of two major steps: shuffled-

difference testing and outliers testing. We applied this 
algorithm to the whole human genome in a sliding window 
fashion. We analyzed 20,000 bases at a time by dividing them 
into 25 bins, each bin of length 800 bases. A/T-singletons 
were counted in each bin. 

1) Shuffled-difference testing 
In this step, we will calculate a score for the possibility of 

containing TSS in the input sequence. Initially, we set score to 
be zero. 

We begin by shuffling the 25 bin numbers to get a new 
A/T-singletons count. For example, if the first, second, and 
third bin counts are 100, 120, and 90, respectively, and the 
shuffle numbers are 3, 1 and 2, after shuffling, the counts 
become 120, 90, and 100, respectively. 

Then, we calculate the difference between the original 
counts and the new counts in each bin. The rationale is that if 
the input sequence contains no TSS across all bins. Then, the 
difference values would be small across all bins. However, if 
there are, for example, TSS in the 13th bin, the difference 
would be large in at least two bins. That is, range and standard 
deviation (SD) of the difference values would be large if TSS 
is present in the input sequence, otherwise range and SD 
would be small if TSS is absent from the input sequence. 

Next, range and SD of the difference value are calculated. 
To obtain the appropriate cutoff value for range and SD, we 
calculate range and SD of the difference values in non-TSS 
region in the genome. Based on this information, we 
arbitrarily set the cutoff value for range at 258 and 62 for SD. 
Therefore, if range is greater than or equal to 258 and SD is 
greater than or equal to 62 for the input sequence, we increase 
the score by one. 

The process of shuffling, calculating range and SD for the 
difference values and setting score is repeated for 10 times. If 
the final score is greater than a threshold (we use 7), then this 
region is passed to the second step. Otherwise, we mark that 
TSS is not present in any bin. 

2) Outliers Testing 
In this step, the region that passed step 2 is checked for 

outliers. The rationale is that the A/T-singletons count of the 
bin that contains TSS would be very different from others and 
can be considered as an outlier. We use the interquartile range 
(IQR) to check for outlier. 

                     Outlier < First quartile − 1.5 × IQR,                (1)  

where IQR = Third quartile − First quartile                

If there are 1–3 outliers occurred in consecutive bin and 
bin 13 is in one of them, we reported that TSS resided in these 
bins that contained outliers. However, if there are 1–3 outliers 
occurred in consecutive bin but bin 13 is not in one of them, 
we slide the window to reposition the outlier bins at the center 
and begin step 1 again. Otherwise, we mark that this 20,000-
base region contains no TSS. 

D. Performance Evaluations 
We compared our method to Promoter2.0, which uses 

neural network and genetic algorithm to identify TSS [9]. We 
regarded TSSs data obtained from UCSC database as the truth. 
We applied our algorithm and Promoter2.0 to the whole 

19th International Computer Science and Engineering Conference (ICSEC) 
Chiang Mai, Thailand, 23-26 November, 2015 
 



 

Fig. 3. Distribution of A- and T- singletons in regions with TSS in human. Left: A-singletons distribution. Right: T-singletons distribution. The X-axis represents 
bin, where TSS resides in the 13th bin. The Y-axis represents the number of singletons normalized by the number of gene. 

 

Fig. 4. Distribution of A/T-singletons in human. Left: A/T-singletons distribution in regions with TSS residing in the 13th bin. Right: A/T-singletons distribution 
in regions without TSS (control). The X-axis represents bin. The Y-axis represents the number of A/T-singletons normalized by the number of gene. 

genome in a sliding window fashion as mentioned. The results 
in each bin are then compared to the truth. This allows us to 
calculate true positive, true negative, false positive and false 
negative as shown in the Table I. We evaluate our methods 
using three criteria—sensitivity, specificity and accuracy. 

TABLE I.  CONFUSION TABLE 

 TSS presence 
according to UCSC 

database 

TSS absence 
according to UCSC 

database 
TSS presence 

according to an 
algorithm 

True positive False positive 

TSS absence 
according to an 

algorithm 
False negative True negative 

III. RESULTS 

C. The Characteristics of A/T-singletons 
We investigated A- and T-singletons distribution and 

found that they have similar pattern as reported in Aporntewan 
et al. (2013). That is, V-shaped pattern around TSS still 
remains and the number of A- or T-singletons is lowest at the 
13th bin, which contains TSS. The distributions of A- and T-
singletons are also asymmetrical (Fig. 3). A-singletons are 
more enriched in upstream region more than downstream, 
while T-singletons are more enriched in downstream region 
than upstream. Using t-test, the difference of singletons 
between upstream and downstream region is significant with 
P-value = 6.32 × 10−19 for A-singletons and P-value 
= 6.46 × 10−21 for T-singletons at the 95% significance level. 

Next, we were curious about the distribution of A/T-
singletons. We count both A and T in each bin and normalized 
by the number of gene as before. As expected, the V-shaped  

19th International Computer Science and Engineering Conference (ICSEC) 
Chiang Mai, Thailand, 23-26 November, 2015 
 



TABLE II.  COMPARISONS OF SENSITIVITY, SPECIFICITY AND ACCURACY BETWEEN A/T-SINGLETON AND PROMOTER2.0 

Chromosome 
Sensitivity (%) Specificity (%) Accuracy (%) 

A/T-singleton Promoter2.0 A/T-singleton Promoter2.0 A/T-singleton Promoter2.0 

1 7.05 18.09 99.65 82.11 98.38 81.24 
2 7.96 17.32 99.65 80.01 98.72 79.38 
3 8.04 17.21 99.70 80.14 98.57 79.36 
4 8.34 19.25 99.59 79.86 98.69 79.27 
5 8.45 19.91 99.70 79.67 98.63 78.97 
6 7.07 20.32 99.64 80.15 98.33 79.30 
7 6.89 18.86 99.67 81.09 98.37 80.21 
8 8.25 17.81 99.67 79.92 98.68 79.24 
9 7.29 18.58 99.64 83.18 98.66 80.21 

10 8.51 18.09 99.68 80.44 98.50 79.24 
11 4.89 18.08 99.65 81.54 98.21 80.58 
12 6.15 18.61 99.64 79.68 98.20 78.74 
13 9.16 20.63 99.67 82.61 98.93 82.10 
14 6.38 17.85 99.71 83.38 98.64 82.63 
15 6.01 16.41 99.71 83.95 98.13 82.81 
16 4.46 15.96 99.74 83.17 98.27 82.13 
17 4.44 14.04 99.69 82.62 97.17 80.80 
18 9.12 20.27 99.66 77.38 98.99 76.96 
19 2.94 14.78 99.70 83.80 96.60 81.59 
20 6.38 15.88 99.67 81.25 98.32 80.31 
21 5.19 20.28 99.71 83.13 98.68 82.44 
22 4.41 14.26 99.82 87.23 98.08 85.90 
X 6.88 20.10 99.67 79.06 98.60 78.38 
Y 3.62 18.84 99.88 91.43 99.51 91.15 

 

pattern still holds and bin that contains TSS has the lowest 
frequency as before (Fig. 4, left). In addition, we studied A/T-
singletons distribution in regions without TSS (we will refer to 
these regions as control). We found that the distribution is flat 
across 25 bins (Fig. 4, right). The results clearly showed that 
the distribution of A/T-singletons is obviously distinct between 
region with TSS and without TSS. 

D. Performance Evaluations 
We compared our algorithm to Promoter2.0 and we refer 

to our method as “A/T-singleton.” The criteria used to 
evaluate our method are sensitivity, specificity and accuracy. 
We calculated these values for each chromosome (Table II). 
Our method has sensitivity, specificity and accuracy across all 
chromosomes in average 6.5%, 99% and 98% respectively. 
Promoter2.0 has specificity and accuracy in average 18%, 
82% and 81%. 

IV. DISCUSSION 
We developed a new algorithm, “A/T-singleton,” based on 

a non-random distribution of A/T-singletons around TSS, 
which contained two steps: shuffled-difference testing and 
outliers testing. Then, we compared our algorithm with 
Promoter2.0 using the data from UCSC Genome Browser and 

regarded this data as the truth. The result showed that our 
method has very high specificity and accuracy (close to 
100%), but low sensitivity, which is expected. 

Our algorithm is done in two major steps. The first step, 
shuffled-difference testing, is designed to filter out regions 
that are very likely to be absence of TSS. However, the first 
step alone is not adequate to filter out regions with highly 
fluctuate patterns, since these regions are more likely to pass 
the first step. Therefore, we employ the second step, outlier 
testing. The goal of this step is to detect regions that have a 
sharp drop at the 13th bin pattern (we allowed 1–3 outliers in 
consecutive bins). Thus, regions with fluctuate pattern will not 
be reported as TSS containing region. We are aware that we 
can lose sensitivity with such a strict constraint in the second 
step, since there are a number of genes that have V-shaped 
pattern occurring more than once non-consecutively in 20,000 
bases or some TSSs are nearby within 20,000 bases. We 
traded off sensitivity for specificity as seen in the results; our 
method has very high specificity (99%). 

Although we have lower sensitivity than Promoter2.0, this 
is not surprising. Promoter2.0 used a much more sophisticated 
method to detect TSS, while we use only the distribution of 
A/T-singletons. However, the sensitivity of Promoter2.0 was 
not tremendously higher than our method. Our findings 
suggested that existing methods are likely to be improved if 
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they incorporate the knowledge of A/T-distribution around 
TSS. 

One weak point in this algorithm is that the size of the bin 
is very big. It requires at least 20,000 bases to detect the 
presence of TSS and it cannot tell the exact position of TSS. 
One way to improve this is to lower the bin size. This could be 
the future works. However, our current algorithm serves to 
answer the question we had, that is, investigating if the 
knowledge of A/T distribution can help detect TSS. 

Another interesting attribute is C/G-singletons distribution. 
We expect that the mean C/G-singletons would rise at the 13th 
bin, opposite of A/T-singletons, as there are 4 bases in the 
genome. Using both A/T-singletons and C/G-singletons might 
improve sensitivity. 

V. CONCLUSION 
We investigated whether the knowledge of A/T-singletons 

distribution can help detect TSS by developing an algorithm to 
detect the pattern of A/T-singletons distribution. Our findings 
demonstrated that A/T-singletons distribution can detect TSS 
at some level. However, using this knowledge solely is not 
sufficient to detect all TSSs. Incorporating this knowledge 
should help improve the efficiency of other TSS detecting 
methods. 
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