
Refining High-frequency-queries-based Filter for
Similarity Join

Jaruloj Chongstitvatana
Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University
Bangkok 10330, Thailand

jaruloj.c@chula.ac.th

Natthee Thitinanrungkit
Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University
Bangkok 10330, Thailand

n.thitinanrungkit@gmail.com

Abstract—Similarity join and similarity search are important
for text databases and data cleaning. Filter-and-verification are
applied to reduce the processing time for similarity join and
similarity search. High-frequency-queries-based filter partitions
a dataset according to the similarity between a data record and a
chosen high-frequency-query, and these partitions are stored in a
similarity table. In the filter process, data in some rows of a
similarity table are selected as candidates. Many high-frequency
queries can be used to improve the pruning power. However, the
time to choose an appropriate high-frequency query − i.e. to
choose an appropriate similarity table − increases with the
number of high-frequency queries.

This paper proposes a refinement of high-frequency-queries-
based filter to reduce the filter time and the number of
candidates. To reduce the filter time, inverted lists of high-
frequency queries are used to speed up the token counting, which
reduces the time for choosing an appropriate similarity table.
Binary search in each rows of a similarity table is applied to
further eliminate non-candidates. It is shown from the
experiments that the refined filter method takes less time and
gives better pruning power than the original method.

Keywords—similarity join; filter-and-verfication approach;
high-frequency queries;

I. INTRODUCTION
In text databases, text can be represented by a sequence of

characters or a sequence of tokens, and each token represents a
set of words that can be considered the same [1]. In many
applications, text is represented by a set of tokens. The
similarity between a pair of text is measured from similarity
functions [2], e.g. overlap similarity, Jaccard similarity, cosine
similarity, etc. These functions are based on the number of
common tokens in two text data and the number of tokens in
each text data.

 Similarity join is an operation which finds pairs of similar
text from two relations, and it is used in text databases, data
cleansing, data integration, etc. [3] However, calculating the
similarity for all possible pairs of text is costly, especially when
the datasets are large and text data are long.

The filter-and-verification framework [3] is used to filter
out some unlikely pairs of text data without calculating their
similarity. For all remaining pairs of text data, their similarity

is verified by calculating the similarity function. Some
filtering techniques, such as prefix filtering [3, 4], suffix
filtering [5], positional filtering [5], examine only some part of
text data in order to spend the least amount of time while
filtering out as many non-related text as possible.

 Another filtering technique, called high-frequency-queries-
based filtering [6], partitions a dataset based on the similarity
between each text data and a chosen text, and stores in a table
called similarity table. This chosen text is called a high-
frequency query because it is a text data which appears in high
frequency, or is similar to many queries. The dataset is filtered
for each query based on the similarity between the query and
the chosen high-frequency query.

Normally, more than one high-frequency queries are
chosen in order to improve the pruning power, and the filter
cost grows linearly with the number of chosen high-frequency
queries. The cost of calculating the similarity between the
query and a high-frequency query is high if the query or the
high-frequency query are long. This increases the filter time.
Furthermore, the filter power depends partly on the grain of
similarity tables, but it is inefficient to use fine-grain tables.
This work proposes a refinement of high-frequency-queries-
based filtering to reduce the filter time and increase the pruning
power. A data structure is created to speed up the process of
choosing the high-frequency query. The similarity table is
modified to support finer grain of data partition and improve
the filter power.

This paper is first described filter methods for similarity
join, especially high-frequency-queries-based filtering in
Section II. Then, the refinement of high-frequency-queries-
based filtering is proposed in Section III. Section IV describes
the experiments performed to compare the proposed refinement
to existing methods, together with the result. The conclusions
are discussed in Section V.

II. RELATED WORKS
The brute-force approach for similarity join is prohibitively

expensive because it is expensive to compute the similarity
between two long texts, and computing the similarity between
all pairs of texts is even more costly. Filter-and-verification
framework reduces the cost of computing the similarity by first
filtering out non-candidates, which are text that cannot possibly

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

be answers of the query. Then, the similarity of the remaining
candidates is computed in the verification step. Only the
candidate whose similarity exceeds the given threshold is
returned as an answer. Many approaches are used in the filter
step. Many filter methods, such as prefix filtering, suffix
filtering and positional filtering, examine only some part of a
text and determine if the text is a candidate or not. Another
approach, i.e. high-frequency-queries-based filter, divides text
data into partitions, and chooses only some partitions as
candidates according to the query.

A. Prefix Filtering
Prefix filtering examines only the prefix of each text pair

and finds out whether the number of common tokens between
two texts exceeds the specific threshold before determines to
keep or prune. It is possible to determine if a text record r
contains less than o tokens in common with a text query q by
examining the first |r|-o+1 tokens of r. Thus, a prefix of that
given length is examined. If it is found that the text record
cannot possibly contains more than the required common
tokens, it is filtered out. Otherwise, it remains a candidate for
the query, and is examined further in the verification step.

In [3], a fixed prefix length is used for all data. The pruning
power can be improved with longer prefix at the cost of
computing time. However, there is no optimal prefix length for
every string. [4] proposes an adaptive method, called
AdaptSearch and AdaptJoin, for determining an optimal prefix
length, based on the estimated cost vs. the estimated pruning
power of increasing prefix length. If the increased pruning
power outweighs the increased cost, then the prefix length used
in filtering is increased.

B. Positional Filtering
Positional filtering considers the position of each token in a

pair of text to estimate the highest similarity between the pair.
Positional filtering is used together with other filtering methods
in Ppjoin+ [5].

C. Suffix Filtering
Suffix filtering uses the suffix of a text to filter. The suffix

of a text is further divided into sub-prefix and sub-suffix and
sub-positional filtering is used to prune more candidates. This
procedure can be recursively applied until the remaining
candidate size is small enough. The more the suffix filtering is
recursively applied, the more candidates can be pruned.
Therefore, trade-off between the cost of filter and verify must
be considered for the overall performance.

Ppjoin+ uses prefix filtering, positional filtering and suffix
filtering. First the prefix filtering is applied, then the positional
filtering is applied with survived candidates, and finally the
suffix filtering is then used. This method allows user to specify
the number of times that suffix filtering is recursively called,
and the computation cost and the pruning power can be traded
off.

D. High-frequency-queries-based Filtering
This method is based on the assumption that there are some

queries which are often asked, as shown in Google trends

explorer [7]. High-frequency-queries-based filtering groups
similar text records together according to their similarity with
respect to a chosen text, which is a query that is frequently
asked. This query is called a high-frequency query.

An index structure, called a similarity table, is created to
store pointers to all texts in the dataset. Text data are organized
in the similarity table according to the similarity between the
high-frequency query and the text data. Given a high-frequency
query F of a dataset D and the similarity table T created from F
with s rows, the row i of T stores the pointers to the data
records whose similar value, compared to F, is between i/s and
(i+1)/s. That is, T [i] = {p | p is the pointer to r ∈D, i/s < sim(r,
F) ≤ (i+1)/s}. For example, given a similarity table with 5
rows, the row i contains data records whose similarity with
respect to the high-frequency query is between i/5 and (i+1)/5.
To improve the pruning power, many high-frequency queries
can be used. For each high-frequency query hf, a similarity
table is created, and the dataset in each similarity table is
partitioned according to the similarity between the data record
and hf. For a query, the high-frequency query which is most
similar to the query is chosen, and the corresponding similarity
table is used for filtering.

The filter algorithm is described in Figure 1. The function
index(s) returns the row number of the similarity table
containing data records whose similarity compared to the high-
frequency query is s. For example, given a similarity table with
5 rows, index(0.86) returns the row number 5.

Given a query Q with a threshold t, high-frequency queries fi
and a similarity table Ti which stores partitions of data
according to the similarity between each data record and fi.

1. [Find the best similarity table for filtering]
 For each high-frequency query fi , find sim(fi, Q).
 Choose a high-frequency query hf such that sim(hf, Q) ≥

sim(fi, Q) for all high-frequency queries fi.
 ST := the similarity table created from hf.

2. [Use similarity table for filtering]
 If sim(hf, Q) ≥ 0.5,
 up := index(sim(fh, Q) + t + 1)
 low := index(sim(fh, Q) + t − 1)
 candidates = { }
 for r := low to up
 candidates := candidates ∪ ST[r].

3. [Use adaptSearch for filtering]
If sim(hf, Q)<0.5, candidates := adaptSearch(Q).

Fig. 1. Algorithm for high-frequency-query-based filtering.

A problem with high-frequency-queries-based filtering is
how to choose high-frequency queries so that filtering performs
well for majority of the queries. [8] proposes DBSCAN,
combined with cluster merging, to choose a set of high-
frequency queries.

Another problem for this filter method is the cost of finding
the best similarity table, shown in Step 1 of the algorithm
shown in Figure 1. Although the increase in the number of

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

high-frequency queries can improve the pruning power,
calculating the similarity between a query and all high-
frequency queries is costly, especially when queries are long.
This makes it impractical to use many high-frequency queries.

Another performance issue is resulted from the fixed
number of rows in the similarity table. In Step 2 of the
algorithm in Figure 1, after up, which is the top row in the
range, and low, which is the bottom row in the range, are
calculated, all data records in the rows from low to up are
considered as candidates. Given a query Q with the threshold t,
the similarity between a candidate for Q and the high-
frequency query must be between sim(fh, Q) + t + 1 and sim(fh,
Q) + t − 1. In Step 2, the bounds of the required similarity
value is calculated and mapped into the corresponding rows in
the similarity table. For example, consider a similarity table
with 5 rows. If the required range of the similarity value is
between 0.60 and 0.86, the candidates are in rows 3 and 4.
However, the range of the similarity of data records in row 4 is
between 0.8 and 1.0, and it can contain data records whose
similarity which is not in the required range. These data
records must be removed in the verification step and the
performance of this filter method is compromised.

Next, the modification in high-frequency-queries-based
filter to address these two problems is described next.

III. IMPROVING HIGH-FREQUENCY-QUERY-BASED FILTER
This paper addresses two problems of high-frequency-

queries-based filtering. The first issue is to reduce the time in
choosing the similarity table for filtering. The existing
algorithm uses the brute-force approach which takes a long
time to compute the similarity between many pairs of long
queries, and it takes too long a time when more high-frequency
queries are added. The second refinement is to reduce the
number of candidates obtained from the similarity tables. The
finer grain the similarity table is divided, the more precise the
candidates can be selected.

The modified algorithm is shown in Figure 2, and the
refinement in the algorithm is described next.

A. Faster Selection of Similarity Tables
To reduce the time for selecting the similarity table, we

choose the high-frequency query with the most common tokens
with the query. Inverted lists of tokens are created for all high-
frequency queries to help in finding common tokens. The
inverted list of a token tkn is a list of all high-frequency queries
containing the token tkn. For a high-frequency query fj, the
number of tokens which are also in the query is stored in
HFCnt [j] as shown in Step 1 of the algorithm shown in Figure
2. Then, the high-frequency query with the most tokens in
common with the query is chosen.

With this modification, there is no need to compute the
similarity between the query and all high-frequency queries. It
makes the filtering scale better for a large number of high-
frequency queries.

Given a query Q with a threshold t, high-frequency queries fi ,
inverted lists of tokens in all high-frequency queries, and a
similarity table Ti which stores partitions of data according to
the similarity between each data record and fi.

1. [Find the best similarity table for filtering]
for all high-frequency query fi, HFCounter[i] := 0.

 for each token tkn in the query Q,
 for each query fj in the inverted list of token tkn
 HFCnt [j] := HFCnt [j] + 1

 hf := the high-frequency query fk such that, for all high-
frequency queries fi , HFCnt [k] ≥ HFCnt [i].

 ST := the similarity table based on hf.

2. [Use similarity table, with modification, for filtering]
 If sim(fh, Q) ≥0.5,
 up := index(sim(fh, Q) + t + 1)
 low := index(sim(fh, Q) + t − 1)
 candidates:=partition(Th[low]) ∪ partition(Th[up])
 for r := low+1 to up-1
 candidates := candidates ∪ Th[r].

3. [Use adaptSearch for filtering]
 If sim(fh, Q)<0.5, candidates := adaptSearch(Q).

Fig. 2. Modified algorithm for high-frequency-query-based filtering.

B. Reducing Candidate Sets
Another problem with the similarity table is that it

partitions data records roughly by their similarity with respect
to the chosen high-frequency query. Then, some data records
in the top and the bottom rows, given the bound [sim(fh,
Q)+t−1, sim(fh, Q)+t+1], may be out of the bound.

We propose a modification of the similarity table by storing
data records in each row in the order of the similarity. Then,
data records which are out of the required bound can be
eliminated with binary search, as shown in the function
partition in Step 2 of the algorithm shown in Figure 2. That is,
the similarity value of the record at the middle of the
top/bottom row is calculated and it can be determined if the
upper/lower half of the row can be eliminated. This process is
repeated until all out-of-bound data records can be eliminated.

Experiments are done to evaluate the performance of the
proposed refinement, and they are presented in the next section.

IV. PEREFORMANCE EVALUATION
In this section, experiments which are performed to

evaluate the performance of the proposed modification. Two
datasets – DBLP [9], which contains 1,385,925 records and
467,454 tokens, and NYTimes [10], which contains 299,752
records and 101,636 tokens – are used in the experiments.
Different query sets are randomly generated from the datasets
with varying percentage of high-frequency queries. Each query
set contains 10,000 queries. In a generated query set, a number
of high-frequency queries are created from records in the
dataset by changing some tokens in the record. Each high-
frequency queries is 90% similar to a record in the dataset.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

First, the proposed method is compared to the original high-
frequency-queries-based filter [6]. The filter time and the
average filter percentage, which is the percentage of the
records obtained from the filtering over the whole data records,
are used to compare the performance of the two methods.
Next, the proposed method is compared to AdaptSearch [4],
and the query time is used as a measurement.

A. Comparison to the Original High-frequency-queries-based
Filter
In the experiments, the numbers of high-frequency queries

and the percentage of high-frequency queries in the query sets
are varied. The original and the modified high-frequency-
queries-based filters are applied on DBLP and NYTimes
datasets to measure the filter time and the filter percentage in
the query set.

Figure 3 shows the filter time for both methods with
varying number of high-frequency queries, and Figure 4 shows
the filter time for both methods with varying percentage of
high-frequency queries in the query set. It is shown that the
proposed refinement improves the filter time. From Figure 3,
the filter time increases slightly when the number of high-
frequency queries increases. From Figure 4, the filter time
increases when the percentage of high-frequency queries
decreases.

Fig. 3. Filter time for queries with varying number of high-frequency
queries.

The average filter percentage is measured for similarity
tables with different numbers of high-frequency queries, and
for query sets with different percentage of high-frequency
queries for queries. It is found that the proposed refinement
does not change the filter percentage much. This can be

resulted from the characteristics of data distribution in the
datasets. Furthermore, the filter percentage of the proposed
modification does not depends on the number of high-
frequency queries used in filtering and the percentage of high-
frequency queries in the query sets. However, the number of
high-frequency queries effects the total query time as shown
next.

Fig. 4. Filter time for query sets containing varying percentage of high-
frequency queries.

B. Comparison to AdaptSearch
Only DBLP is used in the comparison to AdaptSearch

because AdaptSearch’s code [11] does not accommodate large
datasets. The query time, which is the filter time together with
the verification time, is measured for the two methods, with
varying number of high-frequency queries and varying
percentage of high-frequency queries.

The query time for the proposed method, using different
number of high-frequency queries, for a query set with 50%
high-frequency queries which are 90% similar to a record in
DBLP is shown, in Figure 5. The query time on queries with
varying percentage of high-frequency queries is shown in
Figure 6.

From the experiment, it is shown that the proposed
modification outperforms AdaptSearch especially when the
number of high-frequency queries is large, and when higher
percentage of queries are similar to one of the high-frequency
queries.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Fig. 5. Query time with varying number of high-frequency queries.

Fig. 6. Query time for query set containing varying percentage of high-
frequency queries.

V. CONCLUSION
This work proposes a refinement for high-frequency-

queries-based filtering. First, we make the selection of
similarity tables faster. Inverted lists of high-frequency queries
are used to speed up counting the number of tokens in high-
frequency-queries which are also in the query. Second, the sets
of data obtained from the upper-bound row and the lower-
bound row of the similarity tables are further filtered by binary
search.

It is shown in the experiments that the modified filter
method is faster than the original one, and the filter percentage
of the modified filter method is also better than the original
filter method. Moreover, the filter time increases slowly with
the increase in the number of similarity tables. Finally, when
this modification of high-frequency-queries-based filtering is
used in similarity search, this method is faster than
AdaptSearch.

REFERENCES

[1] N. Augsten and M. H. Bohlen, "Similarity Joins in Relational Database
Systems", Synthesis Lectures on Data Management, vol. 5, no. 5, p. 1-
124, 2013.

[2] M. Hadjieleftheriou and D. Srivastava, "Approximate String
Processing." in Foundations and Trends in Databases, pp. 267-402,
2011.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning.” in Proceedings of International
Conference on Data Engineering (ICDE), pp. 5-16, 2006.

[4] J. Wang, G. Li and J. Feng, “Can we beat the prefix filtering?: An
adaptive framework for similarity join and search.” in Proceedings of
ACM Management of Data (SIGMOD), pp. 85-96, 2012.

[5] C. Xiao, W. Wang, X. Lin, J. Xu Yu and G. Wang, “Efficient Similarity
Joins for Near Duplicate Detection.” In Proceedings of international
conference on World Wide Web (WWW’ 08), pp. 131-140, 2011.

[6] K. Kunanusont and J. Chongstitvatana, “An Index Structure for
Similarity Join Based on High-frequency queries” in Proceedings of
International Computer Science and Engineering Conference (ICSEC),
pp. 415 – 420, 2014.

[7] “Google trends explorers” http://www.google.com/trends/explore#cmpt
=q.

[8] K. Kunanusont and J. Chongstitvatana, “Finding a set of high-frequency
queries for high-frequency-query-based filter for similarity join” in
Proceedings of 12th International Conference on Electrical Engineering/
Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), 2015.

[9] The DBLP bibliography of published researchers in computer science
obtained on 25th November 2013 from http://www.cs.berkeley.edu
/~jnwang/codes/adapt.tar.gz.

[10] “UCI Machine Learning Repository” https://archive.ics.uci.edu/ml/
datasets.html Obtained on 8th January 2015.

[11] http://www.cs.berkeley.edu/~jnwang/codes/adapt.tar.gz.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

