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Abstract—Similarity join and similarity search are important 
for text databases and data cleaning. Filter-and-verification are 
applied to reduce the processing time for similarity join and 
similarity search. High-frequency-queries-based filter partitions 
a dataset according to the similarity between a data record and a 
chosen high-frequency-query, and these partitions are stored in a 
similarity table. In the filter process, data in some rows of a 
similarity table are selected as candidates. Many high-frequency 
queries can be used to improve the pruning power.  However, the 
time to choose an appropriate high-frequency query − i.e. to 
choose an appropriate similarity table − increases with the 
number of high-frequency queries.  

This paper proposes a refinement of high-frequency-queries-
based filter to reduce the filter time and the number of 
candidates.  To reduce the filter time, inverted lists of high-
frequency queries are used to speed up the token counting, which 
reduces the time for choosing an appropriate similarity table.  
Binary search in each rows of a similarity table is applied to 
further eliminate non-candidates.  It is shown from the 
experiments that the refined filter method takes less time and 
gives better pruning power than the original method.  

Keywords—similarity join; filter-and-verfication approach; 
high-frequency queries;  

I.  INTRODUCTION  
In text databases, text can be represented by a sequence of 

characters or a sequence of tokens, and each token represents a 
set of words that can be considered the same [1].  In many 
applications, text is represented by a set of tokens.  The 
similarity between a pair of text is measured from similarity 
functions [2], e.g. overlap similarity, Jaccard similarity, cosine 
similarity, etc.  These functions are based on the number of 
common tokens in two text data and the number of tokens in 
each text data. 

 Similarity join is an operation which finds pairs of similar 
text from two relations, and it is used in text databases, data 
cleansing, data integration, etc. [3]   However, calculating the 
similarity for all possible pairs of text is costly, especially when 
the datasets are large and text data are long. 

The filter-and-verification framework [3] is used to filter 
out some unlikely pairs of text data without calculating their 
similarity.  For all remaining pairs of text data, their similarity 

is verified by calculating the similarity function.   Some 
filtering techniques, such as prefix filtering [3, 4], suffix 
filtering [5], positional filtering [5], examine only some part of 
text data in order to spend the least amount of time while 
filtering out as many non-related text as possible. 

 Another filtering technique, called high-frequency-queries-
based filtering [6], partitions a dataset based on the similarity 
between each text data and a chosen text, and stores in a table 
called similarity table.  This chosen text is called a high-
frequency query because it is a text data which appears in high 
frequency, or is similar to many queries.  The dataset is filtered 
for each query based on the similarity between the query and 
the chosen high-frequency query.  

Normally, more than one high-frequency queries are 
chosen in order to improve the pruning power, and the filter 
cost grows linearly with the number of chosen high-frequency 
queries. The cost of calculating the similarity between the 
query and a high-frequency query is high if the query or the 
high-frequency query are long. This increases the filter time. 
Furthermore, the filter power depends partly on the grain of 
similarity tables, but it is inefficient to use fine-grain tables.  
This work proposes a refinement of high-frequency-queries-
based filtering to reduce the filter time and increase the pruning 
power.  A data structure is created to speed up the process of 
choosing the high-frequency query.  The similarity table is 
modified to support finer grain of data partition and improve 
the filter power. 

This paper is first described filter methods for similarity 
join, especially high-frequency-queries-based filtering in 
Section II.  Then, the refinement of high-frequency-queries-
based filtering is proposed in Section III.  Section IV describes 
the experiments performed to compare the proposed refinement 
to existing methods, together with the result. The conclusions 
are discussed in Section V. 

II. RELATED WORKS 
The brute-force approach for similarity join is prohibitively 

expensive because it is expensive to compute the similarity 
between two long texts, and computing the similarity between 
all pairs of texts is even more costly.  Filter-and-verification 
framework reduces the cost of computing the similarity by first 
filtering out non-candidates, which are text that cannot possibly 
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be answers of the query.  Then, the similarity of the remaining 
candidates is computed in the verification step. Only the 
candidate whose similarity exceeds the given threshold is 
returned as an answer. Many approaches are used in the filter 
step.  Many filter methods, such as prefix filtering, suffix 
filtering and positional filtering, examine only some part of a 
text and determine if the text is a candidate or not.  Another 
approach, i.e. high-frequency-queries-based filter, divides text 
data into partitions, and chooses only some partitions as 
candidates according to the query. 

A. Prefix Filtering 
Prefix filtering examines only the prefix of each text pair 

and finds out whether the number of common tokens between 
two texts exceeds the specific threshold before determines to 
keep or prune. It is possible to determine if a text record r 
contains less than o tokens in common with a text query q by 
examining the first |r|-o+1 tokens of r.  Thus, a prefix of that 
given length is examined.  If it is found that the text record 
cannot possibly contains more than the required common 
tokens, it is filtered out.  Otherwise, it remains a candidate for 
the query, and is examined further in the verification step. 

In [3], a fixed prefix length is used for all data. The pruning 
power can be improved with longer prefix at the cost of 
computing time. However, there is no optimal prefix length for 
every string. [4] proposes an adaptive method, called 
AdaptSearch and AdaptJoin, for determining an optimal prefix 
length, based on the estimated cost vs. the estimated pruning 
power of increasing prefix length. If the increased pruning 
power outweighs the increased cost, then the prefix length used 
in filtering is increased.  

B. Positional Filtering 
Positional filtering considers the position of each token in a 

pair of text to estimate the highest similarity between the pair.  
Positional filtering is used together with other filtering methods 
in Ppjoin+ [5]. 

C. Suffix Filtering 
Suffix filtering uses the suffix of a text to filter. The suffix 

of a text is further divided into sub-prefix and sub-suffix and 
sub-positional filtering is used to prune more candidates. This 
procedure can be recursively applied until the remaining 
candidate size is small enough. The more the suffix filtering is 
recursively applied, the more candidates can be pruned. 
Therefore, trade-off between the cost of filter and verify must 
be considered for the overall performance. 

Ppjoin+ uses prefix filtering, positional filtering and suffix 
filtering. First the prefix filtering is applied, then the positional 
filtering is applied with survived candidates, and finally the 
suffix filtering is then used. This method allows user to specify 
the number of times that suffix filtering is recursively called, 
and the computation cost and the pruning power can be traded 
off. 

D. High-frequency-queries-based Filtering 
This method is based on the assumption that there are some 

queries which are often asked, as shown in Google trends 

explorer [7]. High-frequency-queries-based filtering groups 
similar text records together according to their similarity with 
respect to a chosen text, which is a query that is frequently 
asked.  This query is called a high-frequency query. 

An index structure, called a similarity table, is created to 
store pointers to all texts in the dataset.  Text data are organized 
in the similarity table according to the similarity between the 
high-frequency query and the text data. Given a high-frequency 
query F of a dataset D and the similarity table T created from F 
with s rows, the row i of T stores the pointers to the data 
records whose similar value, compared to F, is between i/s and 
(i+1)/s. That is, T [i] = {p | p is the pointer to r ∈D, i/s < sim(r, 
F) ≤ (i+1)/s}. For example, given a similarity table with 5 
rows, the row i contains data records whose similarity with 
respect to the high-frequency query is between i/5 and (i+1)/5. 
To improve the pruning power, many high-frequency queries 
can be used.  For each high-frequency query hf, a similarity 
table is created, and the dataset in each similarity table is 
partitioned according to the similarity between the data record 
and hf.  For a query, the high-frequency query which is most 
similar to the query is chosen, and the corresponding similarity 
table is used for filtering.  

The filter algorithm is described in Figure 1.  The function 
index(s) returns the row number of the similarity table 
containing data records whose similarity compared to the high-
frequency query is s. For example, given a similarity table with 
5 rows, index(0.86) returns the row number 5. 

 
Given a query Q with a threshold t, high-frequency queries fi 
and a similarity table Ti which stores partitions of data 
according to the similarity between each data record and fi. 

1. [Find the best similarity table for filtering] 
  For each high-frequency query fi , find sim(fi, Q).  
 Choose a high-frequency query hf such that sim(hf, Q) ≥ 

sim(fi, Q) for all high-frequency queries fi. 
 ST := the similarity table created from hf. 

2. [Use similarity table for filtering] 
 If sim(hf, Q) ≥ 0.5,  
   up   := index(sim(fh, Q) + t + 1) 
   low := index(sim(fh, Q) + t − 1) 
   candidates = { } 
   for r := low  to up  
          candidates := candidates ∪ ST[r]. 

3. [Use adaptSearch for filtering] 
If sim(hf, Q)<0.5, candidates := adaptSearch(Q). 
 

Fig. 1. Algorithm for high-frequency-query-based filtering.  

A problem with high-frequency-queries-based filtering is 
how to choose high-frequency queries so that filtering performs 
well for majority of the queries. [8] proposes DBSCAN, 
combined with cluster merging, to choose a set of high-
frequency queries. 

Another problem for this filter method is the cost of finding 
the best similarity table, shown in Step 1 of the algorithm 
shown in Figure 1.  Although the increase in the number of 

19th International Computer Science and Engineering Conference (ICSEC) 
Chiang Mai, Thailand, 23-26 November, 2015 
 



high-frequency queries can improve the pruning power, 
calculating the similarity between a query and all high-
frequency queries is costly, especially when queries are long.  
This makes it impractical to use many high-frequency queries.  

Another performance issue is resulted from the fixed 
number of rows in the similarity table.  In Step 2 of the 
algorithm in Figure 1, after up, which is the top row in the 
range, and low, which is the bottom row in the range, are 
calculated, all data records in the rows from low to up are 
considered as candidates.  Given a query Q with the threshold t, 
the similarity between a candidate for Q and the high-
frequency query must be between sim(fh, Q) + t + 1 and sim(fh, 
Q) + t − 1.  In Step 2, the bounds of the required similarity 
value is calculated and mapped into the corresponding rows in 
the similarity table.  For example, consider a similarity table 
with 5 rows. If the required range of the similarity value is 
between 0.60 and 0.86, the candidates are in rows 3 and 4. 
However, the range of the similarity of data records in row 4 is 
between 0.8 and 1.0, and it can contain data records whose 
similarity which is not in the required range.  These data 
records must be removed in the verification step and the 
performance of this filter method is compromised. 

Next, the modification in high-frequency-queries-based 
filter to address these two problems is described next. 

III. IMPROVING HIGH-FREQUENCY-QUERY-BASED FILTER  
This paper addresses two problems of high-frequency-

queries-based filtering.  The first issue is to reduce the time in 
choosing the similarity table for filtering. The existing 
algorithm uses the brute-force approach which takes a long 
time to compute the similarity between many pairs of long 
queries, and it takes too long a time when more high-frequency 
queries are added. The second refinement is to reduce the 
number of candidates obtained from the similarity tables.  The 
finer grain the similarity table is divided, the more precise the 
candidates can be selected. 

The modified algorithm is shown in Figure 2, and the 
refinement in the algorithm is described next. 

A. Faster Selection of Similarity Tables 
To reduce the time for selecting the similarity table, we 

choose the high-frequency query with the most common tokens 
with the query.  Inverted lists of tokens are created for all high-
frequency queries to help in finding common tokens. The 
inverted list of a token tkn is a list of all high-frequency queries 
containing the token tkn.  For a high-frequency query fj, the 
number of tokens which are also in the query is stored in 
HFCnt [ j] as shown in Step 1 of the algorithm shown in Figure 
2.  Then, the high-frequency query with the most tokens in 
common with the query is chosen. 

With this modification, there is no need to compute the 
similarity between the query and all high-frequency queries. It 
makes the filtering scale better for a large number of high-
frequency queries. 

 
Given a query Q with a threshold t, high-frequency queries fi , 
inverted lists of tokens in all high-frequency queries, and a 
similarity table Ti which stores partitions of data according to 
the similarity between each data record and fi.   

1. [Find the best similarity table for filtering] 
for all high-frequency query fi, HFCounter[i] := 0. 

 for each token tkn in the query Q, 
 for each query fj in the inverted list of token tkn  
 HFCnt [j] := HFCnt [j] + 1 

  hf :=  the high-frequency query fk such that, for all high-    
frequency queries fi , HFCnt [k] ≥ HFCnt [i]. 

 ST := the similarity table based on hf. 

2.  [Use similarity table, with modification, for filtering] 
 If sim(fh, Q) ≥0.5,  
   up   := index(sim(fh, Q) + t + 1) 
   low := index(sim(fh, Q) + t − 1) 
   candidates:=partition(Th[low]) ∪ partition(Th[up]) 
   for r := low+1 to up-1  
   candidates := candidates ∪ Th[r]. 

3. [Use adaptSearch for filtering] 
 If sim(fh, Q)<0.5, candidates := adaptSearch(Q).  
  

Fig. 2. Modified algorithm for high-frequency-query-based filtering. 

B. Reducing Candidate Sets 
Another problem with the similarity table is that it 

partitions data records roughly by their similarity with respect 
to the chosen high-frequency query.  Then, some data records 
in the top and the bottom rows, given the bound [sim(fh, 
Q)+t−1, sim(fh, Q)+t+1], may be out of the bound.   

We propose a modification of the similarity table by storing 
data records in each row in the order of the similarity.  Then, 
data records which are out of the required bound can be 
eliminated with binary search, as shown in the function 
partition in Step 2 of the algorithm shown in Figure 2.  That is, 
the similarity value of the record at the middle of the 
top/bottom row is calculated and it can be determined if the 
upper/lower half of the row can be eliminated.  This process is 
repeated until all out-of-bound data records can be eliminated. 

Experiments are done to evaluate the performance of the 
proposed refinement, and they are presented in the next section. 

IV. PEREFORMANCE EVALUATION 
In this section, experiments which are performed to 

evaluate the performance of the proposed modification.  Two 
datasets – DBLP [9], which contains 1,385,925 records and 
467,454 tokens, and NYTimes [10], which contains 299,752 
records and 101,636 tokens – are used in the experiments. 
Different query sets are randomly generated from the datasets 
with varying percentage of high-frequency queries. Each query 
set contains 10,000 queries. In a generated query set, a number 
of high-frequency queries are created from records in the 
dataset by changing some tokens in the record. Each high-
frequency queries is 90% similar to a record in the dataset.     
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First, the proposed method is compared to the original high-
frequency-queries-based filter [6].  The filter time and the 
average filter percentage, which is the percentage of the 
records obtained from the filtering over the whole data records, 
are used to compare the performance of the two methods.  
Next, the proposed method is compared to AdaptSearch [4], 
and the query time is used as a measurement. 

A. Comparison to the Original High-frequency-queries-based 
Filter 
In the experiments, the numbers of high-frequency queries 

and the percentage of high-frequency queries in the query sets 
are varied. The original and the modified high-frequency-
queries-based filters are applied on DBLP and NYTimes 
datasets to measure the filter time and the filter percentage in 
the query set.  

Figure 3 shows the filter time for both methods with 
varying number of high-frequency queries, and Figure 4 shows 
the filter time for both methods with varying percentage of 
high-frequency queries in the query set.  It is shown that the 
proposed refinement improves the filter time. From Figure 3, 
the filter time increases slightly when the number of high-
frequency queries increases.  From Figure 4, the filter time 
increases when the percentage of high-frequency queries 
decreases. 

 

 

Fig. 3. Filter time for queries with varying number of high-frequency 
queries. 

The average filter percentage is measured for similarity 
tables with different numbers of high-frequency queries, and 
for query sets with different percentage of high-frequency 
queries for queries.  It is found that the proposed refinement 
does not change the filter percentage much. This can be 

resulted from the characteristics of data distribution in the 
datasets. Furthermore, the filter percentage of the proposed 
modification does not depends on the number of high-
frequency queries used in filtering and the percentage of high-
frequency queries in the query sets.  However, the number of 
high-frequency queries effects the total query time as shown 
next. 

 

Fig. 4. Filter time for query sets containing varying percentage of high-
frequency queries. 

 

B. Comparison to AdaptSearch 
Only DBLP is used in the comparison to AdaptSearch 

because AdaptSearch’s code [11] does not accommodate large 
datasets.  The query time, which is the filter time together with 
the verification time, is measured for the two methods, with 
varying number of high-frequency queries and varying 
percentage of high-frequency queries.   

The query time for the proposed method, using different 
number of high-frequency queries, for a query set with 50% 
high-frequency queries which are 90% similar to a record in 
DBLP is shown, in Figure 5.  The query time on queries with 
varying percentage of high-frequency queries is shown in 
Figure 6.  

From the experiment, it is shown that the proposed 
modification outperforms AdaptSearch especially when the 
number of high-frequency queries is large, and when higher 
percentage of queries are similar to one of the high-frequency 
queries. 
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Fig. 5. Query time with varying number of high-frequency queries. 

 

Fig. 6. Query time for query set containing varying percentage of high-
frequency queries. 

V. CONCLUSION 
This work proposes a refinement for high-frequency-

queries-based filtering.  First, we make the selection of 
similarity tables faster. Inverted lists of high-frequency queries 
are used to speed up counting the number of tokens in high-
frequency-queries which are also in the query.  Second, the sets 
of data obtained from the upper-bound row and the lower-
bound row of the similarity tables are further filtered by binary 
search. 

It is shown in the experiments that the modified filter 
method is faster than the original one, and the filter percentage 
of the modified filter method is also better than the original 
filter method.  Moreover, the filter time increases slowly with 
the increase in the number of similarity tables. Finally, when 
this modification of high-frequency-queries-based filtering is 
used in similarity search, this method is faster than 
AdaptSearch.   
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