
Parallel Random Forest with IPython Cluster

Wasit Limprasert

Department of Computer Science,
Faculty of Science and Technology,

Thammasat University, Pathumthani, Thailand
wasit@cs.tu.ac.th

Abstract—recently research studies require analytic tools

capable to interpret patterns and find hidden knowledge from

huge amount of data. Random Forest, an ensemble-tree classifier

based on bagging method, is one of many well-known classifiers to

find hidden model from data. The classifier has been applied to

recognize various kind of data, e.g. human pose from depth

images, plankton images and time-series pattern analysis. In this

paper, an implementation of optimized parallel Random Forest

has been designed and implemented on IPython, which is an

interactive Python with parallelization functionalities and

convenient to be deployed in most of computing platforms. The

implementation shows 80% of CPU utilization when performing a

training of 107 samples in 12hrs on EC2 cluster with 32 cores. This

implementation shows capability to analyses large amount of data.

Keywords—Parallel Algorithm, Random Forest, IPython

I. INTRODUCTION

Random forest is an ensemble-tree classifier based on
bagging method introduced by Leo Breiman [1]. Random
Forest is a well-known algorithm and applied to recognize
many kind of data, e.g. human pose recognition from depth
images [2], plankton silhouette images [3] and time-series
pattern analysis[4]. The study of depth image recognition in [2]
also showed modification of the splitting method by using two
translation vectors as a splitting parameters to give more
flexibility for generating generalized feature extraction, this
introduces exponential growth of search space. Even the
training time of random forest is longer than other methods such
as SVM but the fast classifying speed and ability to avoid over
fitting is very attractive. The algorithm is also proved to be very
useful when a number of parameters or search space
comparably large to a number of samples, e.g. Gene selection
and classification [5]. Random forest creates multiple decision
trees by finding optimized splitting parameter in every branch
on the decision tree based on information theory similar to
C4.5[6]. It creates discrimination boundary between classes
before averaging all soft classifiers to construct a complete
classifier. It is capable to find pseudo optimum parameters for
the trees by randomly exploring the search space[7]. This
makes the algorithm able to investigate high dimensional data
and also makes an automatic feature selection from high
dimension feature dataset.

Random Forest and similar algorithms use information
entropy and maximizes information gain of each splitting and

recursively perform splitting until reaching the terminating
cases. One of many challenges of using Random Forest is that a
process to construct a decision tree also known as “training”
takes long computation time. For example a study of human
pose recognition [2] using depth images in the training process
with the following setup; 3 trees, 20 deep, 300k training images,
2000 training samples pixels per image, on a 1000 cores cluster
took about 24 hours to finish. This shows the training need to be
performed on a multi-cores processor or a cluster in order to
accelerate the process.

According to work depth model as introduced in [8], the
complexity of Random Forest algorithm is O(N.logN) assuming
the balance tree. The depth of algorithm is logN. The sequence
of algorithm along its depth is unable to be accelerated by
parallel algorithm. Therefore, most of studies aimed to generate
many of narrow decision trees and then combining all trees from
all processors to achieve ensemble learning. For example, a
parallel Random Forest for R [8] showed significant speed-up
ratio when calculating 8,192 trees for a dataset with 23292 genes
and 62 cases from microarray on a High Performance
Computing (HPC) system of 128 cores. However, in practical
applications, most of the time a few number of trees is enough
to classify complex a data set. In [2], a random forest constructed
3 trees of 20 depth resulted in saturated accuracy. The study
showed that a few number of trees gave good result. There is
very small accuracy gain because of increasing the number of
trees when the accuracy already saturated. In general, there is a
tradeoff between short training time and improvement of
accuracy. A larger number of trees may be required for a larger
sample size. This suggests that the few number of trees can give
a good classification results. Mapping tree generating processes
to cores without splitting training data can lead to duplication of
redundant decision model in some computing nodes because all
nodes have the same data to generate the decision model. An
alternative idea [9] emphasis on histogram calculation, where
some part of histogram calculation are performed on computing
nodes and then sub-histograms are merged by using an
approximation. The method removing duplication of redundant
data and communication cores.

Due to a variety of parallel computing platform, there are
many implementations on different platforms. For example in
[10], MPI is used for implementing a C4.5 to generate decision
tree. Recently, Map-Reduce parallelism is also applied to
accelerate the process of calculating an ensemble tree classifier,
e.g. in [12] used breadth first search and Map-Reduce to tackle
marketing research problems. Other hardware platform such as

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

GPU and FPGA [13] also possible but they may not suitable for
large scale calculation because of smaller memory size. IPython
Parallel [11] is an alternative distributed computing platform
that allows user to interactively checking intermediate variables
as similar as MATLAB. The most interesting capability of
IPython Parallel is ability to spawn parallel jobs in a cluster.
IPython Parallel can create a python instance to control all
parallel jobs, this instance is called “controller” and also able to
spawn many instances to be computing engines on a cluster. The
controller can access local variables on engines by using IPython
direct interface called “direct view”. This allows users to debug
both controller and engines effectively.

II. OUR METHOD

In this paper, the parallel Random Forest is implemented by
using IPython[11], an interactive python with visualization tools
and parallel computing functionality. IPython is able to launch a
MPI-like parallel task and broadcasts a message over a HPC
cluster using a few lines of code. The IPython code for cluster
can be executed on a normal multi-processor computer allowing
the same code to run on multiple platforms. This is very
convenient for intermediate programmer to start the parallel
programing and there is no requirement of a huge HPC in
development stage. IPython provides a parallel programing
module, which allows a controller computer to read/write local
variables from/to engine computers using a very compact code.
Comparing Map-Reduce to IPython parallel, Map-Reduce
distributes data to many nodes attempting to reduce bottleneck
of communication. However, overhead of communication when
launching a Map-reduce job may take unexpected delay up to a
minute [12]. Generating a deep tree using Map-Reduce may cost
large latency overhead in a small size infrastructure. Therefore,
the method proposed in this paper is suitable for medium size
dataset, quick installation, interactive and fast learning process.

The proposed parallel Random Forest distributes dataset to
all computing nodes by dividing the large original dataset
equally and transferring to all computing nodes. When data is
already in the computing node, the communication between a
controller and nodes reduces. Unlike previous design, the
proposed algorithm allocates computing processors to perform a
single tree generating at a single time. This method allows
computing system to process larger data because large amount
of training dataset required large size of memory to store
intermediate information. In [8] assigned a calculation of a tree
(or trees) to a computing node without any help from other
nodes, therefore the available memory to be used in calculation
is limited by cache or memory of a single node. Moreover using
a large number of decision trees do not contribute much on recall
rate as shown in [2]. Increasing a number of decision trees larger
than 3 trees makes saturated recall rate and much longer training
time. Generating many trees is ineffective solution. The
proposed algorithm also uses approximation of entropy to
accelerate the merging histogram process. All detail of the new
algorithm is discussed in the next section.

A. Sequential Algorithm

As similar as other supervise learning methods, the training
process requires labels of class (C) and a table of dataset ��� for
training, where the index of column is denoted by � and �

represents an index of row (or record). The value in the dataset
at column � and row � represented by ���, ��.

The sequential process of generating a decision tree based on
extremely random forest [7] can be summarized as shown in Fig.
1. At training initialization, the root node of the tree consists of
a collection of samples�� = {�}�. Then � is randomly selected
and some set of records �∗ from dataset are uniformly selected
and the indexes of records are stored in a parent node for
calculation of threshold
 by using lookup table ���∗, ��. In this
splitting test, the value ���, �� of all � is compare to
. If the
value ���, �� less than
, the record will be moved to the left
node stored in node QL, otherwise the data will be stored in node
QR. For each attempt of splitting, the objective is to maximize
information gain � as in

� = �� −
|��|

|�|
. ��� −

|��|

|�|
. ��� .

Where �� is Shannon entropy [13] of the sample set �. The

size of sample set � is denoted by |�|. Once the information
gain of all attempts are calculated, the best splitting parameter
that yields largest information gain � is set to decision tree and
permanently split the parent node � into �� and ��. The

Initialization � = {�} samples of a root node

- For each attempt to find splitting parameters:

- Propose the splitting parameters � randomly

- Sample �∗ for generating the thresholds

- Generate threshold
 = ���∗, ��

- Allocate empty lists for �� and ��

- For � in :

- If ���, �� <
 :

- Put � in ��

- Else:

- Put � in ��

- Compute information gain �

- Find ��,
�∗ = ��������,���

- splitting � into �� and �� using ��,
�∗

- Then recursively call the for loop to process ��

and �� until reaching terminating cases

Fig. 1: Pseudo code of sequential Random Forest

Initialization � = {�} samples of a root node
Initialization of engines

Append root node into a queue

- While queue is not empty:

- Controller and engines dequeuer

- Controller checks depth and |�|

- Engines generate a set of splitting candidates

{ ��,
� }

- Controller gathers all splitting parameters from
engines

- Controller broadcasts all parameters back to
engines

- Engines calculate sub-entropy

- Controller compute information gain �

- Controller split the current node using the best

splitting parameters ��∗,
∗� and append left and
right nodes to the queue

Fig. 2. Pseudo code of Parallel Random Forest

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

process recursively calls splitting for �� and �� until reaching
the terminating cases as following;

1. Depth of the decision tree reaching maximum depth

2. |�| is less than minimum bag size
3. There is no information gain after split test.

The complexity of the sequential algorithm to generate a tree

is �� !"#�!�, where a number of column of the dataset is

and ! is the number of the samples in the dataset.

B. Parallel Algorithm

The proposed method distributes dataset uniformly over the
computing system as similar to SPMD (singe program multiple
data). In order to minimize communication between nodes,
small amount of information is transmitted over the cluster. To
achieve the goal, the critical and data dependent tasks are
computed by a controller. All computing nodes are assigned to
help the controller to generate a single tree at a time. The
calculation of the “for loop” in sequential algorithm is divided

and distributed to all engines. Synchronization of recursion
functions are replaced by queueing implementation giving
cleaner code and better encapsulation.

As the sub-entropy is computed from every engine, the
overall information gain can be computed by

� = �� − ∑
|��%|

|�|
. ���%& − ∑

|��%|

|�|
. ���%& .

, where ' is the index of computing node. The calculation of

entropy has complexity of �� !"#�!� for sequential
algorithm. The entropy calculation contributes high proportion
of computational time. Profiling the sequential code with 1x105

samples shows that entropy calculation takes about 97% of
computational time. Distributing the task should significantly
accelerates the over process. The proposed parallel version
shares the entropy calculation.
 The Parallel Random Forest algorithm starts with
initialization of both controller and engines as shown in Fig. 2
and Fig. 4. Then the queues of all engines and controller are
appended with initial root node to be processed. In while loop,
the recent node is removed from the queue for the following
calculations; generating the candidates splitting parameters by
engines, gathering the splitting parameters to controller, and
broadcasting all gathered parameters back to engine to calculate
the sub-entropy. The best splitting parameters are used for make
a next permanent splitting and the new children nodes are added
into the queue. The source code of the proposed algorithm is in
a repository [14].

III. EXPERIMENT

The experiment is divided into three parts. The objective
of the first experiment is to verify the algorithm and
implementation. The first experiment evaluates the algorithm
by synthetic data on a private cloud.

Initial and append a root node to a queue

Pop queue and Check terminating cases

Controller Engines

While queue is not empty ----------------------

Generate {��,
�}

Gather {��,
�}

Broadcast {��,
�}

Calculate sub-entropy

Compute G

��,
�∗ = ��������,���

Split the current

node by ��,
�∗ and

append children nodes

to the queue

End while --------------------------------------

Record the tree

Fig. 4: sequential diagram of task sharing between controller and

engines

Fig. 3(top-left) synthetic data, (top-right) the result classification,

(bottom-left) a sample of algae image and (bottom-right) FFT of the

image before converted to feature vector

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

The second experiment compares training time of our
method with other standard machine learning tool.

 In the third experiment, the algorithm is applied for image
recognition. The extracted feature vector has high dimension,
which makes the problems slightly difficult and takes longer
time for training.

A. Synthetic Data on private cloud

The synthetic dataset in the first experiment is generated
by Python script as can be found in [14]. The synthetic dataset
is a collection of 2D coordinates of a spiral shape, where the
points are labeled into many classes. The training dataset

consists of two columns to represent ��,)� coordinate. The
visualization of the synthetic dataset is shown in Fig. 3. The
training set up of this experiment is following: maximum
depth of tree of 20, minimum bag size of 2, number of
splitting candidates of 100 per dimension of feature vector and
the dimension of the feature vector is 2. The training is
performed on private cloud infrastructure based on OpenStack
[15]. The generated dataset is serialized and stored into a file
before uploading into virtual machines. Each machine has
same amounts of size but different data to be performed. The
output from the training is set of decision trees that can be
saved into a file. The result decision trees are later loaded for
classification. The classifiers constructed by averaging output
trees is evaluated by 10-fold cross validation to confirm the
result accuracy. The classification normally take far shorter
computing time compared to training process.

B. Training time comparision

In order to compare our implementation with other
methods, the training uses the benchmark dataset CIFAR-100
[16], which consists 50,000 images divided into 100 classes
each small image is RGB color 32x32 pixels. The dataset is
used for comparing the training time with the standard
machine learning tool scikit-learn 0.14 and scikit-learn
0.15[17]. The training processes are performed in the same
infrastructure as in the first experiment using 8 computing
nodes. In this experiment the maximum depth is set to 20 and
dimension of the feature vector is 128 per color channel. The
information of the raw image is reduced by using FFT to
remove the high frequency spectrum.

C. Image recognition

In the second experiment a collection of algae images are
used for generating dataset. The images are captured by a
digital optical microscope attached by a Raspberry Pi CCD
sensor. Fig. 3 shows an original algae image and the FFT
image before extracting low frequency spectrum to be used in
training. The image collection consists of 11 types of algae
images. The collection of feature vectors are extracted from
images by cropping into size of 200 by 200 pixels around a
particular sample pixel. Each sample is converted to a feature
vector using Fast Fourier Transform (FFT). Then high
frequency domain is removed to reduce dimension a feature
vector, which has remaining feature vector of 128 dimension.
The feature vectors are pre-calculated once before training to
reduce computational time. The setup of this experiment are:

Fig. 5: training time of synthetic data using 8 cores on a vCPU

Fig. 6: output tree size from synthetic data using 8 cores on a vCPU

Fig. 7: result accuracy with synthetic data using 3 decision trees

Fig. 8: computation time when varies a number of CPUs

1.00

10.00

100.00

1000.00

10000.00

100000.00

100 10000 1000000
sanmple size

Training time (s)Training time (s)Training time (s)Training time (s)

5

10

50

100

500

10

100

1000

10000

100000

1000000

100 10000 1000000

sample size

Tree size (kB)

5

10

50

100

500

0.00

20.00

40.00

60.00

80.00

100.00

100 1000 10000 100000 1000000
number of samples

Accuracy (%)

0

200

400

600

800

0 20000 40000 60000 80000 100000

ti
m

e
 (

s)

Samples

training time (s) with 100 classes

2 engines 4 engines 8 engines

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

10,724,760 sample cropped images, 11 classes of labels, a
number of engines of 31 and 1 controller using EC2 elastic
cloud, maximum depth of 20, minimum bag size of 2. A
number of splitting parameter candidates is 100 per dimension
of feature vector (the total number of candidates is 12,800).
The feature extraction process is also computed in distributed
computing system. The image collection is divided and stored
in all computing engines equally. In this experiment, the
cluster is initialized by using StarCluster [18] and the dataset
is stored in the Elastic Block Storage volume. The volume is
mounted before performing training. The training normally
takes several hours. During the training the cluster is
monitored by AWS console and via a SSH terminal.
Therefore, the status of cluster and also utilization of all
computing engines can be observed remotely through the
internet.

IV. RESULTS

 The results from both experiments, are observed and
recorded by both SSH and AWS console to collect the
following data: computation time, size of output decision tree
and accuracy. In the first experiment, the number of engines is
varied from 2, 4 to 8 engines and during the training the
computation time is recorded. The relation between
computation time and samples size is examined and result is
shown in Fig. 5. The computation time of training process
when the number of classes in the synthetic data varies as
following 5, 10, 50, 100 and 500 classes. From the synthetic
dataset, the computation time is approximately proportional to
the number of samples used in the training. The training time
also approximately proportional to the number of classes in
the dataset. The proposed Parallel Random Forest can process
simple 2D feature space scenario with sample size of 1x104
samples within about 100 seconds.

A. Results from synthetic data

From the experiment, the computation time is fairly
proportional to the sample size as shown in Fig. 5. An
interesting thing we found that number of dimension has small
effect on the computation time. This can explain by the small
commination and no for-loop of classes in the algorithm. The
output tree is serialized and saved using pickle module [19]
and the size of decision tree is shown in Fig. 6. The size of
output tree increases dramatically when the number of classes

Table 1: training time comparison

SciKit-Learn 0.14 SciKit-Learn 0.15 Our method

1207s 445s 430s

increasing because the complexity of feature space makes the
algorithm continue split the tree to deep level. This may cause
overfitting because the number of classes is too large compare
to a small sample size. In Fig. 7, the accuracy clearly depend
of the sample size and the number of classes. The large
number of classes in dataset requires more complicated
decision boundary in the hyper-dimensional feature space. The
low accuracy from the experiment on 500 class dataset implies
the number of samples is too small and samples are very
sparse in the feature space. When a sample size increases, the
accuracy rises until nearly touch 100% accuracy. The result
accuracy increases as the number of sample increases and
saturated just below 100%. This trend of improvement of
accuracy is a characteristic of Random Forest [2].

Fig. 8 shows computation time when varying the number
of engines and samples. Larger dataset size requires more
computational time. At around 80,000 samples, the 2-engine
process takes computational time around 3.6 times longer than
8 engines process. Converting 94% of sequential program to a
parallel version and executed on 8 cores can have maximum
speedup ratio around 6 times as predicted by Amdahl's law.
However, in many practical cases overhead due to
communication always reduces speedup ratio.

The results verified the algorithm works as expected. In
next experiment, dataset from image recognition problem is
tested.

B. Comparison result

In this experiment, the dataset of 50k samples with 384
dimension of feature vector is used in the training process, in
order to compare, the computing time between our method
and others. The result from comparison the training time is
shown as in Table 1, where our method is about 4% faster than
SciKit-Learn0.15.

C. Result from algae image

After the original images are cropped and extracted the
feature vectors of 128 dimensions. All 10 million feature
vectors are distributed equally over the cluster and then the
training process is ready to start. The training process takes
around 12 hours. In Fig. 9, the CPU utilization is recorded
during the training. The training starts just after 2:00 and
finishes around 14:00. The utilization in this training process
is around 80% and peak memory used by 32 CPUs is around
135GB. The results labeled images are shown in Fig. 10. The
output trees are evaluated by cross validation and gives 98%
of maximum accuracy, when training dataset of 11 classes and
1,116 images. The image pixels are labeled by hand before
training. The manual label procedure is done similar to [2].
Note that the debris and white space in the image are labeled
as a background class.

Fig. 9: utilization of vCPU during training of the algae image

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

Fig. 10: (left) original unlabeled original images, (right) labeled

images by using output tree from the training

V. CONCLUSION

In this paper, a new design of a parallel Random Forest
is proposed to use many engines concurrently for computing
sub-entropy in the splitting process in order to generate a single
tree at a time. This gives opportunity for engines to store larger
intermediate data in memory, therefore the proposed algorithm
can handle medium to large dataset. The implementation shows
capability to process large data with a size of 10 million samples
(11 classes 128 dimension) in about 12 hours on 32 virtual
CPUs ASW EC2. The proposed method based on IPython,
which can be deployed easily in most of computing platforms.

ACKNOWLEDGMENT

 This project is supported by Thailand Research Fund
(TRF), contract No RDG5720034. The project receives
remarkable helps from Kasidit Chanchio to set the private
cloud for experiments. The author also gratefully
acknowledges the partial support provided by Central
Scientific Instrument Center (CSIC), Faculty of Science and
Technology, Thammasat University.

REFERENCES

[1] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[2] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A.
Blake, M. Cook, and R. Moore, “Real-time Human Pose Recognition in
Parts from Single Depth Images,” Commun ACM, vol. 56, no. 1, pp.
116–124, Jan. 2013.

[3] T. Luo, K. Kramer, D. B. Goldgof, L. O. Hall, S. Samson, A. Remsen,
and T. Hopkins, “Recognizing plankton images from the shadow image
particle profiling evaluation recorder,” Syst. Man Cybern. Part B

Cybern. IEEE Trans. On, vol. 34, no. 4, pp. 1753–1762, 2004.
[4] H. Deng, G. Runger, E. Tuv, and M. Vladimir, “A time series forest for

classification and feature extraction,” Inf. Sci., vol. 239, pp. 142–153,
Aug. 2013.

[5] R. Díaz-Uriarte and S. A. de Andrés, “Gene selection and classification
of microarray data using random forest,” BMC Bioinformatics, vol. 7,
no. 1, p. 3, Jan. 2006.

[6] J. R. Quinlan, C4.5: Programs for Machine Learning. Elsevier, 2014.
[7] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Mach. Learn., vol. 63, no. 1, pp. 3–42, Mar. 2006.
[8] L. Mitchell, T. M. Sloan, M. Mewissen, P. Ghazal, T. Forster, M.

Piotrowski, and A. S. Trew, “A Parallel Random Forest Classifier for
R,” in Proceedings of the Second International Workshop on Emerging
Computational Methods for the Life Sciences, New York, NY, USA,
2011, pp. 1–6.

[9] Y. Ben-Haim and E. Tom-Tov, “A Streaming Parallel Decision Tree
Algorithm,” J Mach Learn Res, vol. 11, pp. 849–872, Mar. 2010.

[10] J. Pješivac-Grbović, G. Bosilca, G. E. Fagg, T. Angskun, and J. J.
Dongarra, “Decision Trees and MPI Collective Algorithm Selection
Problem,” in Euro-Par 2007 Parallel Processing, A.-M. Kermarrec, L.
Bougé, and T. Priol, Eds. Springer Berlin Heidelberg, 2007, pp. 107–
117.

[11] F. Pérez and B. E. Granger, “IPython: A System for Interactive
Scientific Computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 21–29, May
2007.

[12] B. T. Rao and L. S. S. Reddy, “Survey on Improved Scheduling in
Hadoop MapReduce in Cloud Environments,” ArXiv12070780 Cs, Jul.
2012.

[13] S. L. Hartman, R. M. Howard, L. Johnson, J. S. Lacy, S. P. McMurray,
and M. L. Ruehl, “Web-based system and application for collaborative
planning of a networked program schedule,” US8131579 B2, 06-Mar-
2012.

[14] L. Wasit, “wasit7/parallel_forest · GitHub,” parallel forest. [Online].
Available: https://github.com/wasit7/parallel_forest. [Accessed: 01-Jul-
2015].

[15] “Home » OpenStack Open Source Cloud Computing Software.”
[Online]. Available: https://www.openstack.org/. [Accessed: 30-Jul-
2015].

[16] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” 2009. [Online]. Available:
https://scholar.google.co.uk/scholar?q=Learning+Multiple+Layers+of+
Features+from+Tiny+Images%2C+Alex+Krizhevsky%2C+2009.&btnG
=&hl=en&as_sdt=0%2C5. [Accessed: 07-Oct-2015].

[17] “Ensemble methods — scikit-learn.” [Online]. Available: http://scikit-
learn.org/stable/modules/ensemble.html#forest. [Accessed: 07-Oct-
2015].

[18] “STAR: Cluster - Home.” [Online]. Available:
http://star.mit.edu/cluster/. [Accessed: 30-Jul-2015].

[19] “11.1. pickle — Python object serialization — Python 2.7.10
documentation.” [Online]. Available:
https://docs.python.org/2/library/pickle.html. [Accessed: 01-Jul-2015].

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

