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Abstract—recently research studies require analytic tools 

capable to interpret patterns and find hidden knowledge from 

huge amount of data. Random Forest, an ensemble-tree classifier 

based on bagging method, is one of many well-known classifiers to 

find hidden model from data. The classifier has been applied to 

recognize various kind of data, e.g. human pose from depth 

images, plankton images and time-series pattern analysis. In this 

paper, an implementation of optimized parallel Random Forest 

has been designed and implemented on IPython, which is an 

interactive Python with parallelization functionalities and 

convenient to be deployed in most of computing platforms. The 

implementation shows 80% of CPU utilization when performing a 

training of 107 samples in 12hrs on EC2 cluster with 32 cores. This 

implementation shows capability to analyses large amount of data. 
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I.  INTRODUCTION 

Random forest is an ensemble-tree classifier based on 
bagging method introduced by Leo Breiman [1]. Random 
Forest is  a well-known algorithm and applied to recognize 
many kind of data, e.g. human pose recognition from depth 
images [2], plankton silhouette images [3] and time-series 
pattern analysis[4]. The study of depth image recognition in [2] 
also showed modification of the splitting method by using two 
translation vectors as a splitting parameters to give more 
flexibility for generating generalized feature extraction, this 
introduces exponential growth of search space. Even the 
training time of random forest is longer than other methods such 
as SVM but the fast classifying speed and ability to avoid over 
fitting is very attractive. The algorithm is also proved to be very 
useful when a number of parameters or search space 
comparably large to a number of samples, e.g. Gene selection 
and classification [5]. Random forest creates multiple decision 
trees by finding optimized splitting parameter in every branch 
on the decision tree based on information theory similar to 
C4.5[6]. It creates discrimination boundary between classes 
before averaging all soft classifiers to construct a complete 
classifier. It is capable to find pseudo optimum parameters for 
the trees by randomly exploring the search space[7]. This 
makes the algorithm able to investigate high dimensional data 
and also makes an automatic feature selection from high 
dimension feature dataset. 

Random Forest and similar algorithms use information 
entropy and maximizes information gain of each splitting and 

recursively perform splitting until reaching the terminating 
cases. One of many challenges of using Random Forest is that a 
process to construct a decision tree also known as “training” 
takes long computation time. For example a study of human 
pose recognition [2] using depth images in the training process 
with the following setup; 3 trees, 20 deep, 300k training images, 
2000 training samples pixels per image, on a 1000 cores cluster 
took about 24 hours to finish. This shows the training need to be 
performed on a multi-cores processor or a cluster in order to 
accelerate the process. 

According to work depth model as introduced in [8], the 
complexity of Random Forest algorithm is O(N.logN) assuming 
the balance tree. The depth of algorithm is logN. The sequence 
of algorithm along its depth is unable to be accelerated by 
parallel algorithm. Therefore, most of studies aimed to generate 
many of narrow decision trees and then combining all trees from 
all processors to achieve ensemble learning. For example, a 
parallel Random Forest for R [8] showed significant speed-up 
ratio when calculating 8,192 trees for a dataset with 23292 genes 
and 62 cases from microarray on a High Performance 
Computing (HPC) system of 128 cores. However, in practical 
applications, most of the time a few number of trees is enough 
to classify complex a data set. In [2], a random forest constructed 
3 trees of 20 depth resulted in saturated accuracy. The study 
showed that a few number of trees gave good result. There is 
very small accuracy gain because of increasing the number of 
trees when the accuracy already saturated. In general, there is a 
tradeoff between short training time and improvement of 
accuracy. A larger number of trees may be required for a larger 
sample size. This suggests that the few number of trees can give 
a good classification results. Mapping tree generating processes 
to cores without splitting training data can lead to duplication of 
redundant decision model in some computing nodes because all 
nodes have the same data to generate the decision model. An 
alternative idea [9] emphasis on histogram calculation, where 
some part of histogram calculation are performed on computing 
nodes and then sub-histograms are merged by using an 
approximation. The method removing duplication of redundant 
data and communication cores. 

Due to a variety of parallel computing platform, there are 
many implementations on different platforms. For example in 
[10], MPI is used for implementing a C4.5 to generate decision 
tree. Recently, Map-Reduce parallelism is also applied to 
accelerate the process of calculating an ensemble tree classifier, 
e.g. in [12] used breadth first search and Map-Reduce to tackle 
marketing research problems. Other hardware platform such as 
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GPU and FPGA [13] also possible but they may not suitable for 
large scale calculation because of smaller memory size. IPython 
Parallel [11] is an alternative distributed computing platform 
that allows user to interactively checking intermediate variables 
as similar as MATLAB. The most interesting capability of 
IPython Parallel is ability to spawn parallel jobs in a cluster. 
IPython Parallel can create a python instance to control all 
parallel jobs, this instance is called “controller” and also able to 
spawn many instances to be computing engines on a cluster. The 
controller can access local variables on engines by using IPython 
direct interface called “direct view”. This allows users to debug 
both controller and engines effectively.  

II. OUR METHOD 

In this paper, the parallel Random Forest is implemented by 
using IPython[11], an interactive python with visualization tools 
and parallel computing functionality. IPython is able to launch a 
MPI-like parallel task and broadcasts a message over a HPC 
cluster using a few lines of code. The IPython code for cluster 
can be executed on a normal multi-processor computer allowing 
the same code to run on multiple platforms. This is very 
convenient for intermediate programmer to start the parallel 
programing and there is no requirement of a huge HPC in 
development stage. IPython provides a parallel programing 
module, which allows a controller computer to read/write local 
variables from/to engine computers using a very compact code. 
Comparing Map-Reduce to IPython parallel, Map-Reduce 
distributes data to many nodes attempting to reduce bottleneck 
of communication. However, overhead of communication when 
launching a Map-reduce job may take unexpected delay up to a 
minute [12]. Generating a deep tree using Map-Reduce may cost 
large latency overhead in a small size infrastructure. Therefore, 
the method proposed in this paper is suitable for medium size 
dataset, quick installation, interactive and fast learning process.   

The proposed parallel Random Forest distributes dataset to 
all computing nodes by dividing the large original dataset 
equally and transferring to all computing nodes. When data is 
already in the computing node, the communication between a 
controller and nodes reduces. Unlike previous design, the 
proposed algorithm allocates computing processors to perform a 
single tree generating at a single time. This method allows 
computing system to process larger data because large amount 
of training dataset required large size of memory to store 
intermediate information. In  [8] assigned a calculation of a tree 
(or trees) to a computing node without any help from other 
nodes, therefore the available memory to be used in calculation 
is limited by cache or memory of a single node. Moreover using 
a large number of decision trees do not contribute much on recall 
rate as shown in [2]. Increasing a number of decision trees larger 
than 3 trees makes saturated recall rate and much longer training 
time. Generating many trees is ineffective solution. The 
proposed algorithm also uses approximation of entropy to 
accelerate the merging histogram process. All detail of the new 
algorithm is discussed in the next section.   

A. Sequential Algorithm 

As similar as other supervise learning methods, the training 
process requires labels of class (C) and a table of dataset ��� for 
training, where the index of column is denoted by � and � 

represents an index of row (or record). The value in the dataset 
at column  � and row � represented by ���, ��. 

The sequential process of generating a decision tree based on 
extremely random forest [7] can be summarized as shown in Fig. 
1. At training initialization, the root node of the tree consists of 
a collection of samples�� = {�}�. Then � is randomly selected 
and some set of records �∗ from dataset are uniformly selected 
and the indexes of records are stored in a parent node for 
calculation of threshold  by using lookup table ���∗, ��. In this 
splitting test, the value ���, �� of all � is compare to . If the 
value ���, �� less than , the record will be moved to the left 
node stored in node QL, otherwise the data will be stored in node 
QR. For each attempt of splitting, the objective is to maximize 
information gain � as in 

� = �� −
|��|

|�|
. ��� −

|��|

|�|
. ��� . 

Where ��  is Shannon entropy [13] of the sample set �. The 

size of sample set � is denoted by |�|. Once the information 
gain of all attempts are calculated, the best splitting parameter 
that yields largest information gain � is set to decision tree and 
permanently split the parent node � into �� and ��. The 

Initialization � = {�} samples of a root node 

- For each attempt to find splitting parameters: 

- Propose the splitting parameters � randomly 

- Sample �∗ for generating the thresholds 

- Generate threshold  = ���∗, �� 

- Allocate empty lists for �� and �� 

- For � in  : 

- If ���, ��  <   : 

- Put � in �� 

- Else: 

- Put � in �� 

- Compute information gain � 

- Find ��, �∗ = ��������,��� 

- splitting � into �� and �� using ��, �∗ 

- Then recursively call the for loop to process �� 

and �� until reaching terminating cases  

Fig. 1:  Pseudo code of sequential Random Forest 

Initialization � = {�} samples of a root node 
Initialization of engines 

Append root node into a queue 

- While queue is not empty: 

- Controller and engines dequeuer 

- Controller checks depth and |�| 

- Engines generate a set of splitting candidates 

{ ��,� } 

- Controller gathers all splitting parameters from 
engines 

- Controller broadcasts all parameters back to 
engines 

- Engines calculate sub-entropy 

- Controller compute information gain � 

- Controller split the current node using the best 

splitting parameters ��∗, ∗� and append left and 
right nodes to the queue  

Fig. 2. Pseudo code of Parallel Random Forest 
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process recursively calls splitting for �� and �� until reaching 
the terminating cases as following; 

1. Depth of the decision tree reaching maximum depth 

2. |�| is less than minimum bag size 
3. There is no information gain after split test. 

The complexity of the sequential algorithm to generate a tree 

is �� !"#�!�, where   a number of column of the dataset is 

and ! is the number of the samples in the dataset. 

B. Parallel Algorithm 

The proposed method distributes dataset uniformly over the 
computing system as similar to SPMD (singe program multiple 
data). In order to minimize communication between nodes, 
small amount of information is transmitted over the cluster. To 
achieve the goal, the critical and data dependent tasks are 
computed by a controller.  All computing nodes are assigned to 
help the controller to generate a single tree at a time. The 
calculation of the “for loop” in sequential algorithm is divided 

and distributed to all engines. Synchronization of recursion 
functions are replaced by queueing implementation giving 
cleaner code and better encapsulation. 

As the sub-entropy is computed from every engine, the 
overall information gain can be computed by 
 

� = �� − ∑
|��%|

|�|
. ���%& − ∑

|��%|

|�|
. ���%& . 

 

, where ' is the index of computing node. The calculation of 

entropy has complexity of �� !"#�!� for sequential 
algorithm. The entropy calculation contributes high proportion 
of computational time. Profiling the sequential code with 1x105 

samples shows that entropy calculation takes about 97% of 
computational time. Distributing the task should significantly 
accelerates the over process. The proposed parallel version 
shares the entropy calculation. 
 The Parallel Random Forest algorithm starts with 
initialization of both controller and engines as shown in Fig. 2 
and Fig. 4. Then the queues of all engines and controller are 
appended with initial root node to be processed. In while loop, 
the recent node is removed from the queue for the following 
calculations; generating the candidates splitting parameters by 
engines, gathering the splitting parameters to controller, and 
broadcasting all gathered parameters back to engine to calculate 
the sub-entropy. The best splitting parameters are used for make 
a next permanent splitting and the new children nodes are added 
into the queue. The source code of the proposed algorithm is in 
a repository [14]. 
 

III. EXPERIMENT 

The experiment is divided into three parts. The objective 
of the first experiment is to verify the algorithm and 
implementation. The first experiment evaluates the algorithm 
by synthetic data on a private cloud.  

Initial and append a root node to a queue 

Pop queue and Check terminating cases 

Controller Engines 

While queue is not empty ---------------------- 

Generate {��, �} 

Gather {��, �} 

Broadcast {��, �} 

Calculate sub-entropy 

Compute G 

��, �∗ = ��������,��� 

Split the current 

node by ��, �∗ and 

append children nodes 

to the queue 

End while -------------------------------------- 

Record the tree 

Fig. 4: sequential diagram of task sharing between controller and 

engines 

Fig. 3(top-left) synthetic data, (top-right) the result classification, 

(bottom-left) a sample of algae image and (bottom-right) FFT of the 

image before converted to feature vector 
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The second experiment compares training time of our 
method with other standard machine learning tool. 

 In the third experiment, the algorithm is applied for image 
recognition. The extracted feature vector has high dimension, 
which makes the problems slightly difficult and takes longer 
time for training. 

A. Synthetic Data on private cloud 

The synthetic dataset in the first experiment is generated 
by Python script as can be found in [14]. The synthetic dataset 
is a collection of 2D coordinates of a spiral shape, where the 
points are labeled into many classes. The training dataset 

consists of two columns to represent ��, )� coordinate. The 
visualization of the synthetic dataset is shown in Fig. 3. The 
training set up of this experiment is following: maximum 
depth of tree of 20, minimum bag size of 2, number of 
splitting candidates of 100 per dimension of feature vector and 
the dimension of the feature vector is 2. The training is 
performed on private cloud infrastructure based on OpenStack 
[15]. The generated dataset is serialized and stored into a file 
before uploading into virtual machines. Each machine has 
same amounts of size but different data to be performed. The 
output from the training is set of decision trees that can be 
saved into a file. The result decision trees are later loaded for 
classification. The classifiers constructed by averaging output 
trees is evaluated by 10-fold cross validation to confirm the 
result accuracy. The classification normally take far shorter 
computing time compared to training process.  

B. Training time comparision 

In order to compare our implementation with other 
methods, the training uses the benchmark dataset CIFAR-100 
[16], which consists 50,000 images divided into 100 classes 
each small image is RGB color 32x32 pixels. The dataset is 
used for comparing the training time with the standard 
machine learning tool scikit-learn 0.14 and scikit-learn 
0.15[17]. The training processes are performed in the same 
infrastructure as in the first experiment using 8 computing 
nodes. In this experiment the maximum depth is set to 20 and 
dimension of the feature vector is 128 per color channel. The 
information of the raw image is reduced by using FFT to 
remove the high frequency spectrum. 

C. Image recognition 

In the second experiment a collection of algae images are 
used for generating dataset. The images are captured by a 
digital optical microscope attached by a Raspberry Pi CCD 
sensor. Fig. 3 shows an original algae image and the FFT 
image before extracting low frequency spectrum to be used in 
training. The image collection consists of 11 types of algae 
images. The collection of feature vectors are extracted from 
images by cropping into size of 200 by 200 pixels around a 
particular sample pixel. Each sample is converted to a feature 
vector using Fast Fourier Transform (FFT). Then high 
frequency domain is removed to reduce dimension a feature 
vector, which has remaining feature vector of 128 dimension. 
The feature vectors are pre-calculated once before training to 
reduce computational time. The setup of this experiment are:  

 
Fig. 5: training time of synthetic data using 8 cores on a vCPU 

 
Fig. 6: output tree size from synthetic data using 8 cores on a vCPU 

 
Fig. 7: result accuracy with synthetic data using 3 decision trees 

 
 

 
Fig. 8: computation time when varies a number of CPUs 
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10,724,760 sample cropped images, 11 classes of labels, a 
number of engines of 31 and 1 controller using EC2 elastic 
cloud, maximum depth of 20, minimum bag size of 2. A 
number of splitting parameter candidates is 100 per dimension 
of feature vector (the total number of candidates is 12,800). 
The feature extraction process is also computed in distributed 
computing system. The image collection is divided and stored 
in all computing engines equally. In this experiment, the 
cluster is initialized by using StarCluster [18] and the dataset 
is stored in the Elastic Block Storage volume. The volume is 
mounted before performing training. The training normally 
takes several hours. During the training the cluster is 
monitored by AWS console and via a SSH terminal. 
Therefore, the status of cluster and also utilization of all 
computing engines can be observed remotely through the 
internet. 

IV. RESULTS  

 The results from both experiments, are observed and 
recorded by both SSH and AWS console to collect the 
following data: computation time, size of output decision tree 
and accuracy. In the first experiment, the number of engines is 
varied from 2, 4 to 8 engines and during the training the 
computation time is recorded. The relation between 
computation time and samples size is examined and result is 
shown in Fig. 5. The computation time of training process 
when the number of classes in the synthetic data varies as 
following 5, 10, 50, 100 and 500 classes. From the synthetic 
dataset, the computation time is approximately proportional to 
the number of samples used in the training. The training time 
also approximately proportional to the number of classes in 
the dataset. The proposed Parallel Random Forest can process 
simple 2D feature space scenario with sample size of 1x104 
samples within about 100 seconds. 

 

A. Results from synthetic data 

From the experiment, the computation time is fairly 
proportional to the sample size as shown in Fig. 5. An 
interesting thing we found that number of dimension has small 
effect on the computation time. This can explain by the small 
commination and no for-loop of classes in the algorithm. The 
output tree is serialized and saved using pickle module [19] 
and the size of decision tree is shown in Fig. 6. The size of 
output tree increases dramatically when the number of classes  

Table 1: training time comparison 

SciKit-Learn 0.14 SciKit-Learn 0.15 Our method 

1207s 445s 430s 

 
increasing because the complexity of feature space makes the 
algorithm continue split the tree to deep level. This may cause 
overfitting because the number of classes is too large compare 
to a small sample size. In Fig. 7, the accuracy clearly depend 
of the sample size and the number of classes. The large 
number of classes in dataset requires more complicated 
decision boundary in the hyper-dimensional feature space. The 
low accuracy from the experiment on 500 class dataset implies 
the number of samples is too small and samples are very 
sparse in the feature space. When a sample size increases, the 
accuracy rises until nearly touch 100% accuracy. The result 
accuracy increases as the number of sample increases and 
saturated just below 100%. This trend of improvement of 
accuracy is a characteristic of Random Forest [2]. 

Fig. 8 shows computation time when varying the number 
of engines and samples. Larger dataset size requires more 
computational time. At around 80,000 samples, the 2-engine 
process takes computational time around 3.6 times longer than 
8 engines process. Converting 94% of sequential program to a 
parallel version and executed on 8 cores can have maximum 
speedup ratio around 6 times as predicted by Amdahl's law. 
However, in many practical cases overhead due to 
communication always reduces speedup ratio.  

The results verified the algorithm works as expected. In 
next experiment, dataset from image recognition problem is 
tested.  

B. Comparison result 

In this experiment, the dataset of 50k samples with 384 
dimension of feature vector is used in the training process, in 
order to compare, the computing time between our method 
and others. The result from comparison the training time is 
shown as in Table 1, where our method is about 4% faster than 
SciKit-Learn0.15.  

C. Result from algae image 

After the original images are cropped and extracted the 
feature vectors of 128 dimensions. All 10 million feature 
vectors are distributed equally over the cluster and then the 
training process is ready to start. The training process takes 
around 12 hours. In Fig. 9, the CPU utilization is recorded 
during the training. The training starts just after 2:00 and 
finishes around 14:00. The utilization in this training process 
is around 80% and peak memory used by 32 CPUs is around 
135GB. The results labeled images are shown in Fig. 10. The 
output trees are evaluated by cross validation and gives 98% 
of maximum accuracy, when training dataset of 11 classes and 
1,116 images. The image pixels are labeled by hand before 
training. The manual label procedure is done similar to [2]. 
Note that the debris and white space in the image are labeled 
as a background class. 
 

Fig. 9: utilization of vCPU during training of the algae image 
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Fig. 10: (left) original unlabeled original images, (right) labeled 

images by using output tree from the training 

V. CONCLUSION 

In this paper, a new design of a parallel Random Forest 
is proposed to use many engines concurrently for computing 
sub-entropy in the splitting process in order to generate a single 
tree at a time. This gives opportunity for engines to store larger 
intermediate data in memory, therefore the proposed algorithm 
can handle medium to large dataset. The implementation shows 
capability to process large data with a size of 10 million samples 
(11 classes 128 dimension) in about 12 hours on 32 virtual 
CPUs ASW EC2. The proposed method based on IPython, 
which can be deployed easily in most of computing platforms. 
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