
 
 

A Parser Generator Using the Grammar Flow Graph 

Abstract—Recently, a new way to represent context-free 
grammars (CFG) has been put forward. The representation uses 
a directed graph called the Grammar Flow Graph (GFG). The 
GFG provides a framework to parse all context-free languages 
(CFL) based on Earley’s algorithm that is easier to understand 
than the original Earley's presentation. In addition, the GFG 
connects two seemingly distant concepts for regular language 
parsing and parsing of CFLs. It shows that simulating all the 
moves through a non-deterministic finite-state automaton (NFA) 
can be generalized to moving along all appropriate GFG paths. 
This paper introduces a GFG parser generator whose 
functionalities are equivalent to popular parser generators like 
Yacc or Bison. However, it works on all CFGs - ambiguous or 
unambiguous. Our parser generator takes a grammar file that 
represents strings in CFL as an input and outputs a parser 
program to parse those strings. We evaluate it against two other 
parser generators, one based on the original Earley's 
representation and the other based on the Cocke–Younger–
Kasami (CYK) algorithm. The result indicates that the 
performance of our parser generator is on a par with that based 
on the original Earley's scheme and superior to the CYK's parser 
generator. The code for our parser generator can be downloaded 
from the following link:  

https://bitbucket.org/kramatk/earleyparser. 

Keywords—Parser generator; Grammar Flow Graph; Earley’s 
algorithm. 

I.  INTRODUCTION 
In this work, we are interested in building and evaluating a 

parser generator using a new framework called the Grammar 
Flow Graph (GFG). Such a parser generator can handle any 
context-free language (CFL) specified with either ambiguous 
or unambiguous context-free grammar (CFG). We compare 
our parser generator against those based on two existing 
algorithms, the original Earley's scheme and the Cocke–
Younger–Kasami (CYK) algorithm. Some popular parser 
generators like Yacc or Bison are a special case of our parser 
generator as they only handle a subset of CFG, namely, SLR, 
LALR(1), or LR(1). These specialized grammars are already 
expressive enough to specify programming language syntax, 
hence, these parser generators are mostly used to generate 
parsers for computer programming languages. These parsers 
possess an obvious advantage in that they run in O(N) time 
where N is the size of the input string in a CFL. This quickens 
the front-end compilation process significantly. In contrast, 
our generated parser, although more generalized, runs much 
slower in O(N3) time. While our parser generator may not be 
suitable for generating parsers for computer languages, it finds 

its niche in the field of natural language processing where the 
grammars are more complex and can be highly unambiguous.  

A. The Grammar Flow Graph (GFG) 
GFG is a direct graph that represents a CFG. Each 

production in the grammar is reformulated to a node which 
consists of a production rule and progression of its production 
denoted by (dot) . Pingali and Bilardi present and prove in [1] 
that any context-free grammar G can be transformed into a 
corresponding GFG in O(|G|) space and time. |G| denotes the 
size of the grammar. They also classify nodes in GFG as 
shown in Table 1. Intuitively, GFG is an automaton for CFL 
similar to a non-deterministic finite-state automaton (NFA) for 
regular language. So, with the GFG framework, parsing CFL 
can be viewed as an extension to simulating moves through an 
NFA to handle regular language. Some additional stack 
bookkeeping needs to be incorporated in to generalize this 
NFA scheme to handle CFL. 

 
Table. 1. Classification of GFG nodes. A,B are non-terminal symbols; t is a 
terminal symbol; α,β are any strings that are constructed by the non-terminal 
and terminal symbols according to the rules of the grammar. 

Node Type Description 

START Node labeled .A 

END Node labeled A. 

CALL Node labeled A -> α .B β 

RETURN Node labeled A -> α B. β 

SCAN Node labeled A -> α .t β 
 
We will now briefly explain how parsing is done with the 

GFG by means of an example. Consider the following 
grammar: 

 
s -> np vp 
np -> DET NOUN 
vp -> VERB np 
 
The three non-terminals are s, np, and vp, while the three 

terminals are DET, NOUN, and VERB. The associated GFG 
for this grammar is shown in Fig. 1. There are three START 
nodes denoted by .s, .np, and .vp and three END nodes 
denoted by s., np., and vp., accordingly. The CALL nodes 
have an arrow pointing out whereas the RETURN nodes have 
an arrow pointing in. For example, s -> .np vp is a CALL 
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node, while s -> np. vp is a RETURN node. The rest are 
SCAN nodes. 

 

 

Fig. 1. An example of the Grammar Flow Graph (GFG). 

Consider the following input string to be parsed: 
 
“a cat eats a fish” 
 
Let's assume that 'a' is a DET terminal, 'cat' and 'fish' are 

NOUN terminals, and 'eats' is a VERB terminal. We start at 
the START node .s in the GFG and move along its transitional 
edge to a CALL node labeled s -> .np vp. Next, we enter a 
branch - another START node - .np. Once this happens, there 
needs to be an additional bookkeeping to ensure that a proper 
RETURN edge is exercised upon exiting this branch. At this 
stage, we, therefore, need to have a unique ID tag and 
propagate this ID through the next node until the exit is 
reached. Once in this branch, we will move into the np -> 
.DET NOUN node, which is a SCAN node that checks if the 
current input string token is consistent with its labeled edge. If 
so, the parser will consume this token - in this case the DET 
token being consumed is 'a' - and jump to the next node. This 
action continues and the next token consumed is 'cat' until an 
unmatched token is discovered or a node with an edge to a 
RETURN node is reached. In the former case, the parser will 
reject the string input whereas, for the latter case, it will have 
to find a correct RETURN path by using the unique ID that 
has been tagged on before the branch is entered. Without this 
additional bookkeeping step, the GFG acts like an NFA. 

In this case, the correct RETURN path leads to the vp -> 
np. vp node, which, in turn, will lead to the .vp branch and the 
'eats' token will be consumed. This process continues until the 
s. node is reached. A string in CFL is recognized by the GFG 
if and only if there exists a path from .s to s. that is consistent 
with parsing conditions. 

 

 The main objective of this work is to introduce a practical 
parser generating tool using the GFG and evaluate it. The rest 
of this paper is organized as follows. The next section 
discusses the related work. Section 3 explains the 
methodology for creating the parser generator and describes 
how it works. Section 4 and 5 discuss the performance of the 
generated parser and conclude the paper, respectively. 

II. RELATED WORK 
The success of programming languages comes from the 

development of parsing algorithms. During the early period of 
digital computing, most compiler parsers were hand-written. 
This makes the parsers for large compiler projects hard to 
implement and maintain. In 1963, Brooker et al. [2] presented 
a “Compiler-Compiler” concept that leads to a parser 
generator that was used to eventually generate compilers from 
high-level description. One of the best known parser 
generators is YACC [3] which is widely used to create 
compilers such as gcc and g++. YACC handles grammars in 
LALR(1) form. There are a few shortfalls in YACC. For 
instance, the LALR parsing algorithm complicates the task of 
tracking syntax errors [4].   In addition, there are many 
restrictions when facing “shift-reduce” or “reduce-reduce” 
conflicts [5]. Another well-know recent parser generator is 
ANTLR [6]. It uses LL(*) algorithm from EBNF 
specification, which makes it easier to implement than YACC. 
However, there are only a handful of grammars that are 
compatible with ANTLR, and, hence, limiting its applicability.  

In 1968, Jay Earley published his research that provided a 
general algorithm for parsing any context-free grammar [7]. 
Earley’s algorithm was applied in a few parser generators such 
as Spark [8] and Accent [9]. Nevertheless, Earley’s algorithm 
was difficult to understand and interpret because it relied on 
some hard mathematical concepts and models. As a 
consequence, many researchers try to simplify it by using 
different representations, for example, a graph representation 
proposed by Woods [10] that re-transforms a context-free 
grammar to Recursive Transition Networks (RTNs). There are 
a few variants for RTNs, a notable one is LR-RTNs [11]. The 
GFG can be classified as another RTN variant. The GFG 
represents a CFG on a single graph that concisely and clearly 
captures the operations in Earley’s algorithm. Moreover, the 
GFG can be an important part to solve program analysis 
problems [12]. It is also a great framework for studying 
compilers and natural languages because it illustrates 
relationships among subclasses of context-free grammars as 
well as regular languages. 

III. OUR GFG PARSER GENERATOR 
We have developed a parser generator for recognizing and 

parsing context-free grammars. There are two main sections 
for the input specifications. These are a lexicon file and a 
grammar file. The lexicon file is a part that describes the 
tokenizing logic for each terminal symbol using regular 
expression. We decide to use the PLY library[13] which is 
simple and adaptable for tokenizing input strings. An example 
of a lexicon file is shown in Fig. 2. 
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01 tokens = ( 
02  ' NUMBER ', ' PLUS ', ' MINUS ', ' LPAREN ', ' RPAREN ' 
03 )  
04   
05 t_PLUS   = r' \+ ' 
06 t_MINUS =  r' - ' 
07 t_LPAREN =  r' \( ' 
08 t_RPAREN =  r' \) ' 
09  t_NUMBER =  r' \d+ ' 
10   

Fig. 2. Example of a lexicon file. 

The grammar file, on the other hand, is a part that declares 
the productions for grammars which comprise of a few lines 
beginning with a non-terminal symbol on the left side of an 
arrow “->” and many mixed of terminal and non-terminal 
symbols on the right side of “->”. These symbols may be 
separated by a space. Every non-terminal symbol in this file 
must be lowercased whereas a terminal symbol must be 
uppercased. In addition, each terminal symbol must be 
declared in lexicon file. The content of the grammar file looks 
like the following:  

[Non-terminal Symbol1] -> [Production1] | [Production2] | ... 
[Non-terminal Symbol2] -> [Production1] | [Production2] | ... 

When our parser generator is applied to the input 
specifications, it will create an output file, which is a parser in 
the Python language.  The output file contains many functions 
that provide an easy way to implement additional semantic 
actions. An example of a generated parser is shown in Fig. 3. 
One who has dabbled with compiler literature will quickly 
realize that this generated parser is for the canonical 
expression grammar. 

 
01 def sem_root_1(p): 
02  'root -> exp' 
03  print "cal >",p[0] 
04  return p 
05  
06 def sem_exp_1(p): 
07  'exp -> LPAREN exp PLUS exp RPAREN ' 
08  return p[1]+p[3] 
09 
10 def sem_exp_2(p): 
11  'exp -> LPAREN exp MINUS exp RPAREN ' 
12  return p[1]-p[3] 
13  
14 def sem_exp_3(p): 
15  'exp -> NUMBER ' 
16  return int(p[0].value) 
17 
18 import sys,os 
19 from noom.Noom import Noom  
20 if __name__ == "__main__": 
21  E  = Noom(os.path.abspath(__file__) ,"expression.lex") 
22  print "#### THIS GRAMMAR MUST HAVE PARENs IN EVERY OPERATION ####" 
23  while True: 
24   E.run(raw_input("cal > "))  
 

Fig. 3. Example of an output file. 

 Our parsing algorithm for the GFG is a sort of breadth-first 
exploration thereof. It determines reachability along a given 
path. The algorithm is explained using pseudocode in Alg1. 

 state is a tuple consisting of a current node and a “starting 
number”. The number i means that the procedure starts from 
input at index i. 

 chart is a collection of state and chart[i] indicates the 
current progress with input at index i 

Alg. 1.  Parsing Algorithm for GFG. 

01 FUNCTION GrammarFlowGraph( token , GFG): 
02        addState (startNode,0) to Chart[0] 
03     FOR i from 0 to length(words) : 
04         FOR each state in chart[i] : 
05             currentNode = state.node 
06             IF currentNode is END node : 
07                 FOR each startState in chart[state.start] : 
08                     completer(state,startState ) 
09                 ENDFOR 
10             ELSE : 
11                 FOR each childNode in currentNode : 
12                     IF there are label in edge(currentNode,childNode) : 
13                         IF label == input[i] 
14                         addState (childNode, state.start) to Chart[i+1] 
15                         ENDIF 
16                     ELSE : 
17                         addState (childNode,i) to Chart[i] 
18                     ENDIF 
19                 ENDFOR 
20             ENDIF   
21         ENDFOR 
22     ENDFOR 
23     RETURN chart 

 

 For a more comprehensive example, let's consider Fig. 4 
that shows a part of the Python grammar that we would like to 
parse and generate a runtime interpreter for it. Once the 
grammar is declared in the grammar file and the lexical tokens 
defined in the lexicon file, our GFG parser generator generates 
a parser that recognizes the code snippet shown below the 
grammar. Once the functionalities of a Python interpreter is 
put in the semantic actions, one can run the code and the 
correct result displayed accordingly. 
 We argue that implementing a parser generator with the 
GFG is easier than with the original Earley representation for 
the following reason. The GFG allows parsing to be viewed as 
an extension to simulating moves through an NFA and there 
exists well-defined coding patterns for this type of task. As a 
consequence, it takes less time to do the coding and also 
promotes better understanding of the parsing algorithm. After 
all, many people are more familiar with NFA than Earley's 
esoteric mathematics. Nevertheless, ease of implementation 
cannot be the main reason to justify the advent of GFG 
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parsers. One needs to consider how they perform as well and 
that is the discussion topic in the next section.  
 

 

Fig. 4. Python runtime interpreter created from our parser generator. 

IV. EVALUATION 
The evaluation of our parser generator focuses on the 

performance of the generated GFG parser. We measure the 
time it takes to parse strings of varying lengths using the GFG 
parser. In addition, we measure the memory footprint required 
to parse those strings. Two other parsers that we compare our 
GFG parser against are the original Earley's parser and the 
CYK parser. These are well-know parsers for general CFGs in 
the programming language as well as the natural language 
processing community. 

For the execution time, we use the Timeit library to 
measure it. The measurement is taken after initializing all the 
variables. For each experiment, we collect the measurements 
for 10 rounds before calculating the average value for the 
execution time of each experiment. As for the memory usage, 
we use the Psutil library to measure this.  

We will test the generated parsers on two grammar types:  

1) Simple arithmetic expression   
2) Arithmetic expression in Chomsky Normal Form 

(CNF) 

These two grammars produce the same result. The first one 
uses fewer numbers of productions and each production may 
have different lengths. On the other hand, the second grammar 
specifies that the length of each production must be exactly 
two. This will, as a consequence, create more productions. 

Note that these two grammars are unambiguous, although we 
could have also introduced some degree of ambiguity to them.  

For each experiment, we compare parsing of the above two 
grammars among these three parsing algorithms: 

1) Grammar Flow Graph (GFG) 
2) Earley's algorithm   
3) CYK algorithm  

 
These three parsing methodologies are applicable to any 

general CFG. They all have the same O(N3) runtime, but have 
different constant factors [14, 15]. The parameter N is 
proportional to the size of the string being parsed. 

All the experiments are conducted under Python 3.4 
runtime environment. The hardware system has an Intel Core 
i3 2.93 GHz CPU with 4 Gbytes of RAM running 64-bit 
Ubuntu desktop operating system. 

 

 
Fig. 5. Execution time for simple arithmetic expression. 

 
Fig. 6. Execution time for simple arithmetic expression zooming in on the 
Earley’s and GFG's results. 

A. Execution time for simple arithmetic expression 
 Fig. 5 shows the performance of the three parsing 
algorithms when parsing simple arithmetic expression with 
varying lengths of input strings. As expected, the execution 
time increases as the input size grows. However, the growth 
rate for CYK is much more significant than that of Earley and 
GFG. In fact, for this type of grammar, it looks as if CYK 
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runtime is growing polynomially whereas Early's and GFG's 
only linearly. Fig. 6 zooms in to look more closely at the 
results for Earley and GFG. It indicates that the runtime 
growth rates for these two are indeed comparable and appear 
to be linear. The performance superiority of Earley parser over 
CYK can be attributed to the fact that Earley generates fewer 
"wasted" intermediate parse trees. These intermediaries have 
no bearing on the final parse tree [16]. As for the GFG, its 
performance characteristic is similar to that of Earley since the 
two are conceptually equivalent when it comes to parsing 
actions. 

B. Execution time for arithmetic expression in CNF 
Fig. 7 shows the performance of the three parsing 

algorithms when parsing arithmetic expression in CNF with 
different input string lengths. The results are in line with those 
obtained with the simple arithmetic expression. This suggests 
that the CNF of a grammar does not significantly affect the 
execution time for parsing the language it represents. The 
increase in the production rules seems to be counterbalanced 
by the decrease in the production length. 

 

 
Fig. 7. Execution time for arithmetic expression in CNF. 

C. Memory usage in simple arithmetic expression 

 

Fig. 8. Memory usage in simple arithmetic expression. 

Fig. 8 shows the memory footprint of each parsing 
algorithm required to process input strings of varying lengths. 
In this case, the input strings are arithmetic expressions. 
 Earley has the most desirable memory usage characteristic 
for this type of grammar. The memory footprint seems to stay 
constant even with an increase in the size of the input. For 
GFG, the memory usage goes up relatively slowly as the input 
size grows. CYK memory performance is inferior to both 
GFG's and Earley's. The memory footprint seems to grow very 
quickly as the input size increases. This is because CYK 
operates in a bottom-up parsing style. It needs to discover 
patterns for producing substrings ranging from those whose 
lengths equal one to those whose lengths equal the entire 
string to be parsed. Thus, it consumes a lot of memory. In 
addition, CYK processing requires that a grammar be first 
transformed into CNF style which can lead to an undesirable 
bloat in required space ranging from |G| to 2|G| [17] where |G| 
is the size of the CNF grammar. 

As for GFG, even though its parsing operation is similar to 
Earley’s, its memory characteristic is a bit less attractive. One 
notable reason is that GFG needs to do re-transformations of 
grammars into graph forms before further processing. This can 
increase the size of the grammar to n*|G| where n is the length 
of the longest production in a grammar of size |G|. 
Nevertheless, modern computers are equipped with huge 
amount of RAM that can make this memory issue for GFG 
irrelevant. 

V. CONCLUSION 
This paper presents a parser generator based on the GFG 

framework. The parser generator has been implemented in 
Python and released as open-source software through the 
following link: 

 
https://bitbucket.org/kramatk/earleyparser 

 
We argue that a GFG parser is easier and more intuitive to 

implement than the original Earley parser because it allows 
parsing to be viewed as a generalization of simulating moves 
through an NFA, a conceptual framework most compiler 
people are familiar with. 

The evaluation indicates that, for execution time, parsers 
generated from our parser generator perform as well as Earley 
parsers and significantly better than CYK parsers. As for 
memory footprint, Earley and GFG are considerably better 
than CYK and Earley outperforms GFG by a small margin.  
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