

A Parser Generator Using the Grammar Flow Graph

Abstract—Recently, a new way to represent context-free
grammars (CFG) has been put forward. The representation uses
a directed graph called the Grammar Flow Graph (GFG). The
GFG provides a framework to parse all context-free languages
(CFL) based on Earley’s algorithm that is easier to understand
than the original Earley's presentation. In addition, the GFG
connects two seemingly distant concepts for regular language
parsing and parsing of CFLs. It shows that simulating all the
moves through a non-deterministic finite-state automaton (NFA)
can be generalized to moving along all appropriate GFG paths.
This paper introduces a GFG parser generator whose
functionalities are equivalent to popular parser generators like
Yacc or Bison. However, it works on all CFGs - ambiguous or
unambiguous. Our parser generator takes a grammar file that
represents strings in CFL as an input and outputs a parser
program to parse those strings. We evaluate it against two other
parser generators, one based on the original Earley's
representation and the other based on the Cocke–Younger–
Kasami (CYK) algorithm. The result indicates that the
performance of our parser generator is on a par with that based
on the original Earley's scheme and superior to the CYK's parser
generator. The code for our parser generator can be downloaded
from the following link:

https://bitbucket.org/kramatk/earleyparser.

Keywords—Parser generator; Grammar Flow Graph; Earley’s
algorithm.

I. INTRODUCTION
In this work, we are interested in building and evaluating a

parser generator using a new framework called the Grammar
Flow Graph (GFG). Such a parser generator can handle any
context-free language (CFL) specified with either ambiguous
or unambiguous context-free grammar (CFG). We compare
our parser generator against those based on two existing
algorithms, the original Earley's scheme and the Cocke–
Younger–Kasami (CYK) algorithm. Some popular parser
generators like Yacc or Bison are a special case of our parser
generator as they only handle a subset of CFG, namely, SLR,
LALR(1), or LR(1). These specialized grammars are already
expressive enough to specify programming language syntax,
hence, these parser generators are mostly used to generate
parsers for computer programming languages. These parsers
possess an obvious advantage in that they run in O(N) time
where N is the size of the input string in a CFL. This quickens
the front-end compilation process significantly. In contrast,
our generated parser, although more generalized, runs much
slower in O(N3) time. While our parser generator may not be
suitable for generating parsers for computer languages, it finds

its niche in the field of natural language processing where the
grammars are more complex and can be highly unambiguous.

A. The Grammar Flow Graph (GFG)
GFG is a direct graph that represents a CFG. Each

production in the grammar is reformulated to a node which
consists of a production rule and progression of its production
denoted by (dot) . Pingali and Bilardi present and prove in [1]
that any context-free grammar G can be transformed into a
corresponding GFG in O(|G|) space and time. |G| denotes the
size of the grammar. They also classify nodes in GFG as
shown in Table 1. Intuitively, GFG is an automaton for CFL
similar to a non-deterministic finite-state automaton (NFA) for
regular language. So, with the GFG framework, parsing CFL
can be viewed as an extension to simulating moves through an
NFA to handle regular language. Some additional stack
bookkeeping needs to be incorporated in to generalize this
NFA scheme to handle CFL.

Table. 1. Classification of GFG nodes. A,B are non-terminal symbols; t is a
terminal symbol; α,β are any strings that are constructed by the non-terminal
and terminal symbols according to the rules of the grammar.

Node Type Description

START Node labeled .A

END Node labeled A.

CALL Node labeled A -> α .B β

RETURN Node labeled A -> α B. β

SCAN Node labeled A -> α .t β

We will now briefly explain how parsing is done with the

GFG by means of an example. Consider the following
grammar:

s -> np vp
np -> DET NOUN
vp -> VERB np

The three non-terminals are s, np, and vp, while the three

terminals are DET, NOUN, and VERB. The associated GFG
for this grammar is shown in Fig. 1. There are three START
nodes denoted by .s, .np, and .vp and three END nodes
denoted by s., np., and vp., accordingly. The CALL nodes
have an arrow pointing out whereas the RETURN nodes have
an arrow pointing in. For example, s -> .np vp is a CALL

Pakawat Nakwijit and Paruj Ratanaworabhan
Faculty of Engineering, Department of Computer Engineering, Kasetsart University

email: pakawat.n@ku.th and paruj.r@ku.ac.th

978-1-4673-7825-3/15/$31.00 ©2015 IEEE

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

node, while s -> np. vp is a RETURN node. The rest are
SCAN nodes.

Fig. 1. An example of the Grammar Flow Graph (GFG).

Consider the following input string to be parsed:

“a cat eats a fish”

Let's assume that 'a' is a DET terminal, 'cat' and 'fish' are

NOUN terminals, and 'eats' is a VERB terminal. We start at
the START node .s in the GFG and move along its transitional
edge to a CALL node labeled s -> .np vp. Next, we enter a
branch - another START node - .np. Once this happens, there
needs to be an additional bookkeeping to ensure that a proper
RETURN edge is exercised upon exiting this branch. At this
stage, we, therefore, need to have a unique ID tag and
propagate this ID through the next node until the exit is
reached. Once in this branch, we will move into the np ->
.DET NOUN node, which is a SCAN node that checks if the
current input string token is consistent with its labeled edge. If
so, the parser will consume this token - in this case the DET
token being consumed is 'a' - and jump to the next node. This
action continues and the next token consumed is 'cat' until an
unmatched token is discovered or a node with an edge to a
RETURN node is reached. In the former case, the parser will
reject the string input whereas, for the latter case, it will have
to find a correct RETURN path by using the unique ID that
has been tagged on before the branch is entered. Without this
additional bookkeeping step, the GFG acts like an NFA.

In this case, the correct RETURN path leads to the vp ->
np. vp node, which, in turn, will lead to the .vp branch and the
'eats' token will be consumed. This process continues until the
s. node is reached. A string in CFL is recognized by the GFG
if and only if there exists a path from .s to s. that is consistent
with parsing conditions.

 The main objective of this work is to introduce a practical
parser generating tool using the GFG and evaluate it. The rest
of this paper is organized as follows. The next section
discusses the related work. Section 3 explains the
methodology for creating the parser generator and describes
how it works. Section 4 and 5 discuss the performance of the
generated parser and conclude the paper, respectively.

II. RELATED WORK
The success of programming languages comes from the

development of parsing algorithms. During the early period of
digital computing, most compiler parsers were hand-written.
This makes the parsers for large compiler projects hard to
implement and maintain. In 1963, Brooker et al. [2] presented
a “Compiler-Compiler” concept that leads to a parser
generator that was used to eventually generate compilers from
high-level description. One of the best known parser
generators is YACC [3] which is widely used to create
compilers such as gcc and g++. YACC handles grammars in
LALR(1) form. There are a few shortfalls in YACC. For
instance, the LALR parsing algorithm complicates the task of
tracking syntax errors [4]. In addition, there are many
restrictions when facing “shift-reduce” or “reduce-reduce”
conflicts [5]. Another well-know recent parser generator is
ANTLR [6]. It uses LL(*) algorithm from EBNF
specification, which makes it easier to implement than YACC.
However, there are only a handful of grammars that are
compatible with ANTLR, and, hence, limiting its applicability.

In 1968, Jay Earley published his research that provided a
general algorithm for parsing any context-free grammar [7].
Earley’s algorithm was applied in a few parser generators such
as Spark [8] and Accent [9]. Nevertheless, Earley’s algorithm
was difficult to understand and interpret because it relied on
some hard mathematical concepts and models. As a
consequence, many researchers try to simplify it by using
different representations, for example, a graph representation
proposed by Woods [10] that re-transforms a context-free
grammar to Recursive Transition Networks (RTNs). There are
a few variants for RTNs, a notable one is LR-RTNs [11]. The
GFG can be classified as another RTN variant. The GFG
represents a CFG on a single graph that concisely and clearly
captures the operations in Earley’s algorithm. Moreover, the
GFG can be an important part to solve program analysis
problems [12]. It is also a great framework for studying
compilers and natural languages because it illustrates
relationships among subclasses of context-free grammars as
well as regular languages.

III. OUR GFG PARSER GENERATOR
We have developed a parser generator for recognizing and

parsing context-free grammars. There are two main sections
for the input specifications. These are a lexicon file and a
grammar file. The lexicon file is a part that describes the
tokenizing logic for each terminal symbol using regular
expression. We decide to use the PLY library[13] which is
simple and adaptable for tokenizing input strings. An example
of a lexicon file is shown in Fig. 2.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

01 tokens = (
02 ' NUMBER ', ' PLUS ', ' MINUS ', ' LPAREN ', ' RPAREN '
03)
04
05 t_PLUS = r' \+ '
06 t_MINUS = r' - '
07 t_LPAREN = r' \('
08 t_RPAREN = r' \) '
09 t_NUMBER = r' \d+ '
10

Fig. 2. Example of a lexicon file.

The grammar file, on the other hand, is a part that declares
the productions for grammars which comprise of a few lines
beginning with a non-terminal symbol on the left side of an
arrow “->” and many mixed of terminal and non-terminal
symbols on the right side of “->”. These symbols may be
separated by a space. Every non-terminal symbol in this file
must be lowercased whereas a terminal symbol must be
uppercased. In addition, each terminal symbol must be
declared in lexicon file. The content of the grammar file looks
like the following:

[Non-terminal Symbol1] -> [Production1] | [Production2] | ...
[Non-terminal Symbol2] -> [Production1] | [Production2] | ...

When our parser generator is applied to the input
specifications, it will create an output file, which is a parser in
the Python language. The output file contains many functions
that provide an easy way to implement additional semantic
actions. An example of a generated parser is shown in Fig. 3.
One who has dabbled with compiler literature will quickly
realize that this generated parser is for the canonical
expression grammar.

01 def sem_root_1(p):
02 'root -> exp'
03 print "cal >",p[0]
04 return p
05
06 def sem_exp_1(p):
07 'exp -> LPAREN exp PLUS exp RPAREN '
08 return p[1]+p[3]
09
10 def sem_exp_2(p):
11 'exp -> LPAREN exp MINUS exp RPAREN '
12 return p[1]-p[3]
13
14 def sem_exp_3(p):
15 'exp -> NUMBER '
16 return int(p[0].value)
17
18 import sys,os
19 from noom.Noom import Noom
20 if __name__ == "__main__":
21 E = Noom(os.path.abspath(__file__) ,"expression.lex")
22 print "#### THIS GRAMMAR MUST HAVE PARENs IN EVERY OPERATION ####"
23 while True:
24 E.run(raw_input("cal > "))

Fig. 3. Example of an output file.

 Our parsing algorithm for the GFG is a sort of breadth-first
exploration thereof. It determines reachability along a given
path. The algorithm is explained using pseudocode in Alg1.

 state is a tuple consisting of a current node and a “starting
number”. The number i means that the procedure starts from
input at index i.

 chart is a collection of state and chart[i] indicates the
current progress with input at index i

Alg. 1. Parsing Algorithm for GFG.

01 FUNCTION GrammarFlowGraph(token , GFG):
02 addState (startNode,0) to Chart[0]
03 FOR i from 0 to length(words) :
04 FOR each state in chart[i] :
05 currentNode = state.node
06 IF currentNode is END node :
07 FOR each startState in chart[state.start] :
08 completer(state,startState)
09 ENDFOR
10 ELSE :
11 FOR each childNode in currentNode :
12 IF there are label in edge(currentNode,childNode) :
13 IF label == input[i]
14 addState (childNode, state.start) to Chart[i+1]
15 ENDIF
16 ELSE :
17 addState (childNode,i) to Chart[i]
18 ENDIF
19 ENDFOR
20 ENDIF
21 ENDFOR
22 ENDFOR
23 RETURN chart

 For a more comprehensive example, let's consider Fig. 4
that shows a part of the Python grammar that we would like to
parse and generate a runtime interpreter for it. Once the
grammar is declared in the grammar file and the lexical tokens
defined in the lexicon file, our GFG parser generator generates
a parser that recognizes the code snippet shown below the
grammar. Once the functionalities of a Python interpreter is
put in the semantic actions, one can run the code and the
correct result displayed accordingly.
 We argue that implementing a parser generator with the
GFG is easier than with the original Earley representation for
the following reason. The GFG allows parsing to be viewed as
an extension to simulating moves through an NFA and there
exists well-defined coding patterns for this type of task. As a
consequence, it takes less time to do the coding and also
promotes better understanding of the parsing algorithm. After
all, many people are more familiar with NFA than Earley's
esoteric mathematics. Nevertheless, ease of implementation
cannot be the main reason to justify the advent of GFG

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

parsers. One needs to consider how they perform as well and
that is the discussion topic in the next section.

Fig. 4. Python runtime interpreter created from our parser generator.

IV. EVALUATION
The evaluation of our parser generator focuses on the

performance of the generated GFG parser. We measure the
time it takes to parse strings of varying lengths using the GFG
parser. In addition, we measure the memory footprint required
to parse those strings. Two other parsers that we compare our
GFG parser against are the original Earley's parser and the
CYK parser. These are well-know parsers for general CFGs in
the programming language as well as the natural language
processing community.

For the execution time, we use the Timeit library to
measure it. The measurement is taken after initializing all the
variables. For each experiment, we collect the measurements
for 10 rounds before calculating the average value for the
execution time of each experiment. As for the memory usage,
we use the Psutil library to measure this.

We will test the generated parsers on two grammar types:

1) Simple arithmetic expression
2) Arithmetic expression in Chomsky Normal Form

(CNF)

These two grammars produce the same result. The first one
uses fewer numbers of productions and each production may
have different lengths. On the other hand, the second grammar
specifies that the length of each production must be exactly
two. This will, as a consequence, create more productions.

Note that these two grammars are unambiguous, although we
could have also introduced some degree of ambiguity to them.

For each experiment, we compare parsing of the above two
grammars among these three parsing algorithms:

1) Grammar Flow Graph (GFG)
2) Earley's algorithm
3) CYK algorithm

These three parsing methodologies are applicable to any

general CFG. They all have the same O(N3) runtime, but have
different constant factors [14, 15]. The parameter N is
proportional to the size of the string being parsed.

All the experiments are conducted under Python 3.4
runtime environment. The hardware system has an Intel Core
i3 2.93 GHz CPU with 4 Gbytes of RAM running 64-bit
Ubuntu desktop operating system.

Fig. 5. Execution time for simple arithmetic expression.

Fig. 6. Execution time for simple arithmetic expression zooming in on the
Earley’s and GFG's results.

A. Execution time for simple arithmetic expression
 Fig. 5 shows the performance of the three parsing
algorithms when parsing simple arithmetic expression with
varying lengths of input strings. As expected, the execution
time increases as the input size grows. However, the growth
rate for CYK is much more significant than that of Earley and
GFG. In fact, for this type of grammar, it looks as if CYK

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

runtime is growing polynomially whereas Early's and GFG's
only linearly. Fig. 6 zooms in to look more closely at the
results for Earley and GFG. It indicates that the runtime
growth rates for these two are indeed comparable and appear
to be linear. The performance superiority of Earley parser over
CYK can be attributed to the fact that Earley generates fewer
"wasted" intermediate parse trees. These intermediaries have
no bearing on the final parse tree [16]. As for the GFG, its
performance characteristic is similar to that of Earley since the
two are conceptually equivalent when it comes to parsing
actions.

B. Execution time for arithmetic expression in CNF
Fig. 7 shows the performance of the three parsing

algorithms when parsing arithmetic expression in CNF with
different input string lengths. The results are in line with those
obtained with the simple arithmetic expression. This suggests
that the CNF of a grammar does not significantly affect the
execution time for parsing the language it represents. The
increase in the production rules seems to be counterbalanced
by the decrease in the production length.

Fig. 7. Execution time for arithmetic expression in CNF.

C. Memory usage in simple arithmetic expression

Fig. 8. Memory usage in simple arithmetic expression.

Fig. 8 shows the memory footprint of each parsing
algorithm required to process input strings of varying lengths.
In this case, the input strings are arithmetic expressions.
 Earley has the most desirable memory usage characteristic
for this type of grammar. The memory footprint seems to stay
constant even with an increase in the size of the input. For
GFG, the memory usage goes up relatively slowly as the input
size grows. CYK memory performance is inferior to both
GFG's and Earley's. The memory footprint seems to grow very
quickly as the input size increases. This is because CYK
operates in a bottom-up parsing style. It needs to discover
patterns for producing substrings ranging from those whose
lengths equal one to those whose lengths equal the entire
string to be parsed. Thus, it consumes a lot of memory. In
addition, CYK processing requires that a grammar be first
transformed into CNF style which can lead to an undesirable
bloat in required space ranging from |G| to 2|G| [17] where |G|
is the size of the CNF grammar.

As for GFG, even though its parsing operation is similar to
Earley’s, its memory characteristic is a bit less attractive. One
notable reason is that GFG needs to do re-transformations of
grammars into graph forms before further processing. This can
increase the size of the grammar to n*|G| where n is the length
of the longest production in a grammar of size |G|.
Nevertheless, modern computers are equipped with huge
amount of RAM that can make this memory issue for GFG
irrelevant.

V. CONCLUSION
This paper presents a parser generator based on the GFG

framework. The parser generator has been implemented in
Python and released as open-source software through the
following link:

https://bitbucket.org/kramatk/earleyparser

We argue that a GFG parser is easier and more intuitive to

implement than the original Earley parser because it allows
parsing to be viewed as a generalization of simulating moves
through an NFA, a conceptual framework most compiler
people are familiar with.

The evaluation indicates that, for execution time, parsers
generated from our parser generator perform as well as Earley
parsers and significantly better than CYK parsers. As for
memory footprint, Earley and GFG are considerably better
than CYK and Earley outperforms GFG by a small margin.

REFERENCES

[1] K. Pingali and G. Bilardi, A Graphical Model for Context-Free Grammar
Parsing, Int. Conference on Compiler Construction, 2015

[2] Brooker, R .A.; MacCallum, I. R.; Morris, D.; Rohl, J. S. (1963), "The
compiler-compiler", Annual review in automatic programming 3: 229–
275

[3] S. C. Johnson, YACC — yet another compiler. UNIX Programmer’ s
Manual, 7th Edition, 1978.

[4] G. Sussman and G. Steele. Scheme: An interpreter for extended lambda
calculus. Technical Report AI Memo 349, AI Lab, M.I.T., 1975.

[5] J. Haberman, LL and LR in Context: Why parsing tools are Hard,
http://blog.reverberate.org/2013/09/ll-and-lr-in-context-why-parsing-
tools.html, retrieved on October 25, 2014.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

[6] T. Parr and K. Fisher. LL(*): the foundation of the ANTLR parser
generator. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’11, 2011.

[7] J. Earley. An efficient context-free parsing algorithm. Commun. ACM,
13(2):94–102, 1970.

[8] J. Aycock. The design and implementation of SPARK, a toolkit for
implementing domain-specific languages. In Journal for Computing and
Information Technology, pages 55–66.

[9] F.W. Schröer, ACCENT, A Compiler Compiler for the Entire Class of
Context-Free Languages, Technical Report, 2000:
accent.compilertools.net

[10] W. A. Woods. Transition network grammars for natural language
analysis. Commun. ACM, 13(10), 1970.

[11] M. Perlin. LR recursive transition networks for Earley and Tomita
parsing. In Proceedings of the 29th annual meeting on Association for
Computational Linguistics, ACL ’91, 1991.

[12] T. Reps. Program analysis via graph reachability. Information and
Software Technology, 40(11-12):701–726, 1998.

[13] PLY (Python Lex-Yacc), Retrieved October 19, 2014:
http://www.dabeaz.com/ply/

[14] D. Grune and C.J.H. Jacobs, Parsing Techniques: A Practical Guide. Ellis
Horwood, Chichester, 1990

[15] L. Tratt, Parsing: The Solved Problem That Isn't, Retrieved October 25,
2014:
http://tratt.net/laurie/blog/entries/parsing_the_solved_problem_that_isnt

[16] J. Kegler, Is Earley parsing fast enough?, Retrieved October 25, 2014:
http://blogs.perl.org/users/jeffrey_kegler/2013/04/is-earley-parsing-fast-
enough.html

[17] M. Lange and H. Leiß, To CNF or not to CNF? An Efficient Yet
Presentable Version of the CYK Algorithm,Informatica Didactica 8.

19th International Computer Science and Engineering Conference (ICSEC)
Chiang Mai, Thailand, 23-26 November, 2015

