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Abstract—Genotype imputation based analysis usually con-
sumes computational and data intensive. This paper presents
a practical and efficient process for enhancing the genotype
imputation based analysis on Single Nucleotide Polymorphism
(SNP) using High Performance Computing (HPC). Our process
is split into data quality control, haplotype estimation, and
imputation. We validate and measure the process on a standard
workstation and a server for pilot dataset of chromosome 22
from Genetic Analysis Workshop 16 (GAW16) provided by the
North American Rheumatoid Arthritis Consortium (NARAC).
The NARAC dataset consists of 2,062 individuals and 545,080
SNP variants. We use 1000 Genomes database as reference panels.
Our process correctly and rapidly produces results more than
ordinary steps of the genotype imputation based analysis.

I. INTRODUCTION

Many research topics in Genome-Wide Association stud-
ies (GWAS) of Bioinformatics have not been revealed and
resolved yet. The GWAS research usually tends to intensively
consume both computational and data resources, especially
Single Nucleotide Polymorphism (SNP) analysis. There are
at least 1% or 30 million bases of SNPs and it shares ≥10
million common genetic variants with Minor Allele Frequen-
cies (MAF) ≥5% in human genome. The GWAS objective is
to discover which SNPs influence gene expression. However,
geneticists has found that variations of DNA base sequences
occur on some positions of the SNPs. If a lot of missing
variations are un-genotyped, then these missing variations
may induce ambiguous SNP analysis. As a result, the gene
expression analysis also is ambiguous. The geneticists use
genotype imputation for evaluating evidences of genetic mark-
ers or SNPs association of datasets that they are not directly
genotypes. Therefore, the genotype imputation is useful for
estimating un-genotyped gene positions using existing GWAS
data. The most recent technology only provides about one
million variants. Different genotyping platforms may provide
different information [1] [2] [3].

In general, the analysis of genotype imputation usually

requires High Performance Computing (HPC) as it is computa-
tional and data intensive. From the point of Computer Science
and Engineering, we have found that bioinformaticians usually
lack of customized sufficient tools in the genotype imputation
including hardware, software, and process. As a result, they
always face inconsistency in running analysis environment.
They may also not comprehend what is behind available
software, especially the issues concerning both of computer
and software architecture.

This paper presents a practical and efficient process for
enhancing genotype imputation based analysis on SNPs using
HPC. We employ a dataset of Genetic Analysis Workshop
16 (GAW16) provided by the North American Rheumatoid
Arthritis Consortium (NARAC) [4].

In the next Section, we describe attributes of the NARAC
dataset and preliminary data format conversion. In Section III,
we review related tools for the genotype imputation based
analyzed such as genotype imputation tools and data qual-
ity control tools. Then, we compare these tools and select
interested tools for our proposed process. In Section IV, we
preliminary measure the performance of the related legacy
tools with samples dataset from the NARAC. In Section
V, we propose the efficient process for genotype imputation
based analysis. We split the process into three steps: data
quality control, haplotypes estimation, and imputation. Then,
we validate and measure the performance of our process on
a standard workstation and a server using chromosome 22.
Discussion and Conclusions are presented in Section VI and
VII respectively.

II. THE NARAC DATASET

The GAW16 is a public dataset consisting of 545,080 SNP-
genotype fields from the Illumina 550K chip. There are 2,062
individuals all around the USA, which come from 860 cases
and 1,194 controls. The NARAC dataset is contained in 2 files
with the comma-delimited format. The file narac.csv contains
a header line and 2,062 records of individuals and the file
narac.map contains a header line and 545,080 records of the
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TABLE I. EXAMPLE RECORDS OF THE RAW NARAC DATASET

ID Sex rs5747620 rs5747968 rs2236639
D0024949 F A G A A G G
D0024302 F G G A A G G
D0023151 F ? ? A A G G
D0022042 M ? ? C C G G
D0021275 M A A A A G G

Fig. 1. The number of SNPs and execution time for format conversion

TABLE II. EXAMPLE RECORDS OF THE PEDIGREE FILE

FamilyID IndividualID FatherID MotherID Sex rs5747620 rs5747968 rs2236639
0001 D0024949 0 0 2 1/4 1/1 4/4
0002 D0024302 0 0 2 4/4 1/1 4/4
0003 D0023151 0 0 2 0/0 1/1 4/4
0004 D0022042 0 0 1 0/0 3/3 4/4
0005 D0021275 0 0 1 1/1 1/1 4/4

SNPs-genotype fields (one line per an variant) [4]. Each record
consists of fixed nine fields and a various number of SNP-
genotype fields depending on each chromosome. For example,
Chromosome 1 contains around 40,000 SNPs-genotype fields,
whereas Chromosomes 21 and 22 contain around 8,000 SNPs-
genotype fields each. The total of SNPs-genotype fields of the
dataset is 545,080 records. For example, In Table I, a record
is an individual data representative of Chromosome 22. The
SNPs-genotype fields are in the format “X X” where X is a
base (A, T, C, and G). Missing SNP genotypes are coded as
“? ?” and, these SNPs do not have A T and C G alleles.

In our preliminary study, we have composed simple shell
scripts for converting the raw NARAC data into the Merlin
format (data and pedigree files), which will be estimate inputs
to MACH [5] for haplotypes estimation. We can identify each
number of SNPs-genotype fields in each chromosome (1 - 23)
using a simple shell script and results are shown in Figure 1.
Figure 1 also shows execution times used in hours converting
from the raw NARAC into the Merlin format. For example,
converting Chromosome 22 is about 30 hours, running on
a standard Linux workstation. We compare the result to all
chromosomes and can presume that it may about or more three
months to complete the conversion. This is a large obstacle in
pre-processing data stage. However, there is a related research
concerning splitting data from the NARAC by numbers of
SNPs [5]. We approach to utilize a distributed database system
applying data partitioning such as by chromosome, by SNP
and/or by individual. Table II shows example records of the
pedigree file of Chromosome 22. We transform family IDs
using running numbers, father IDs and mother IDs to zero, for
marking unrelated individuals.

TABLE III. GENOTYPE IMPUTATION TOOLS

Tool Developer
MACH/Minimac/Minimac3 University of Michigan
Beagle University of Auckland
IMPUTE2/SHAPEIT University of Oxford
PLINK Massachusetts General Hospital

III. RELATED TOOLS

In this section, we describe genotype imputation based
analysis related tools, and data quality control tools. Then,
we compare the tools using their attributes.

A. Genotype Imputation Tools

There are many genotype imputation tools which run as
command-line programs on Unix and Linux-based as shown
in Table III [2] [6]. The main algorithm of the tools is Markov-
Chain Monte Carlo (MCMC), numerical approximation algo-
rithms. The genotype imputation tools generally utilize it for
phasing unobserved or hidden states of data by iterating steps
for a hidden markov model [7] [8] [9]. Moreover, outputs of
the programs can be inputs into other tools such as GenABEL
[5], to determine further gene expression and quantitative traits
analysis.

1) MACH & Minimac/Minimac3: MACH 1.0, Markov
Chain based haplotype, is the most popular genotype impu-
tation tool developed by University of Michigan [2] [10] [11].
The current version is a pre-release. It is a sequential program.
MACH supports both SNPs genotype in missing alleles and
SNPs inference in samples of unrelated individuals. Minimac
is a high throughput/multi-threading version of MACH that
implemented using OpenMP [12] also developed by the Uni-
versity of Michigan [6]. It only supports inferring untyped
markers (Method 2 of MACH). Therefore, input of Minimac
must already has been phased before using the program. In
version 3, it accepts only the Variant Call Format (VCF) input
format [13]. There are many programs for converting data
formats to the VCF such as PLINK [14], MACH2VCF and,
SHAPEIT [15]. MACH and Minimac recommend two steps of
genotype imputation. The first step is to phase the samples into
a series of estimated haplotypes. The second step is to carry
out direct impute with these phased haplotypes. In case that
a reference panel is renewed, it is not necessary to phase the
haplotypes again, only the second step has to do re-imputation.

2) SHAPEIT: SHAPEIT stands for Segmented HAPlotype
Estimation and Imputation Tool [14]. SHAPEIT estimates hap-
lotypes or does phasing from genotypes or sequencing data. It
is developed by University of Oxford. SHAPEIT recommends
to do pre-phasing imputation together with IMPUTE2 which
is to be described in the next section. SHAPEIT is free for
academic use only.

3) IMPUTE2: IMPUTE2 is a haplotype-phasing and im-
putation tool. It works based on ideas of Howie et al. 2009 [8].
It supports many modes of genotype imputation. However, we
are interested in only the imputation with one phased reference
panel (pre-phasing) in this paper.

4) ParaHaplo: ParaHaplo 3.0 is a parallel version of geno-
type imputation software packages running on a supercom-
puter, developed by the RIKEN research laboratory, Japan [16].
The paralleled version of haplotype estimation is 20 times
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TABLE IV. GENOTYPE IMPUTATION TOOLS COMPARISON

Tool Objective Programming
Model

Input
Data
Format

Open
Source

MACH Phasing/Imputation Sequential Merlin Yes
Minimac Imputation OpenMP MACH Yes
Minimac3 Imputation OpenMP VCF Yes
ParaHaplo Phasing/Imputation MPI Merlin Yes
SHAPEIT Phasing OpenMP Many No
IMPUTE Phasing/Imputation Sequential IMPUTE2 No
GenABEL Data QC Sequential N/A Yes
PLINK Data

Conversion/QC
Sequential PLINK Yes

faster than the non-parallel version. We have considered our
datasets and concluded that the haplotype blocking method is
another step to be added in the process of our approach. It is
not necessary to break down the datasets into haplotype blocks
due to datasets attributes. However, we have tested ParaHaplo
3.0 with phased haplotypes data of the NARAC-Chromosome
22 on 4-cores 3.0 GHz CPU, 8 GB RAM, Linux and a cluster
of National e-Science Infrastructure Consortium, Thailand, it
has 12 nodes Intel Xeon 2.66 GHz, total memory of 576 GB
and PBS job scheduler. Both of tests failed due to memory
segmentation faults.

B. Data Quality Control Tools

Bioinformaticians highly recommend doing data quality
control (QC) [11]. The basic data QC is to filter un-frequent
alleles from variants. The most popular data QC is GenABEL.
Main objectives of GenABEL are to analyze quantitative traits
and also support data QC. By the way, there is a parallel
version of the R-GenABEL which is ParallABEL. ParallABEL
splits the NARAC dataset into a number of subsets, which
depends on available processors. The paper [5] reported that
partitioning the chromosome dataset by the number of SNPs
shows the highest parallel performance. Another QC program
for genotype imputation based analysis is the PLINK software
package [14] [17], a tool for handling the SNP data, developed
by Massachusetts General Hospital. PLINK also is a tool for
data format conversion.

C. Genotype Imputation Tools Comparing

We summarize related genotype imputation based analysis
tools and identify their attributes as shown in Table IV.
Most programs have their own formats for input and output
data, and also provide data format conversion. For example,
SHAPEIT supports the PLINK PED/MAP file format, PLINK
BED/BIM/FAM file format, and Oxford GEN/SAMPLE file
format. SHAPEIT also supports format conversion of its output
to the VCF and Oxford formats. There are many format con-
version programs. The most is PLINK. In Table V, Autumn,
L. reported genotype imputation tools performance comparison
by including all steps required such as Beagle, IMPUTE2 and,
Minimac [18]. The performance showed that pre-phasing an
original dataset before imputation can improve significantly
computation time.

IV. PRELIMINARY PERFORMANCE MEASUREMENT

We have measured preliminary performance of some re-
lated tools for genotype imputation steps as shown in Figure
2 with a small sample dataset and the reference panel consists

TABLE V. GENOTYPE IMPUTATION TOOLS PERFORMANCE
COMPARISON

Tool Total Number
of SNPs

Computation
Time (Hrs.)

IMPUTE2 668,180 23
BEAGLE 484,023 213
IMPUTE2 with Pre-phasing 668,180 8
BEAGLE with Pre-phasing 484,023 34
Minimac 667,870 18

Fig. 2. The ordinary workflow of genotype imputation

TABLE VI. EXECUTION TIME OF IMPUTATION STEP APPLYING
CHROMOSOME 22 ON A WORKSTATION

Tool Execution Time (Min.)
MACH Fatal Error
Minimac 13
Minimac-omp Segmentation Fault

of Chromosome 22 (2,062 individuals, 8205 SNPs) of the
NARAC dataset. The reference panel is the March 2010
release of Europe (CEU) phased data population from the
1000 Genomes Project (http://www.1000genomes.org). The
reference panel contains 120 haplotypes. Our workstation
operating on Linux Kernel 2.6.32, CentOS 6.6 has a 4-cores
single CPU 3.0 GHz and 8 GB RAM.

Figure 3 shows the haplotypes estimation or phasing times
on the Linux workstation by varying number of individuals.
We configured the number of states to 400 and the number of
iterations to 50 for MACH 1.0. The program took about one
and a half hours to complete phasing 95 individuals. It took
about 59 hours or two and a half days to complete phasing
all individuals of Chromosome 22. After that, we performed
the imputation step using MACH 1.0 with phased data from
the previous step. It took about five minutes to complete
imputation for 80 individuals. In case of 2,062 individuals,
MACH returned a fatal error as shown in Table VI, whereas
Minimac took 13 minutes, and the multi-threaded version
of Minimac returned segmentation faults. We collected the
execution times for only successful running steps as shown in
Table VII. It took about 60 hours for the genotype imputation
of the NARAC-Chromosome 22 and 108 hours or four and a
half days for completing all steps. Furthermore, it probably
needs at least three and a half months for the genotype
imputation analysis of all 23 chromosomes.

V. RESULTS

SNP analysis is workflow-oriented. Workflow is a represen-
tative of automatic executable instructions that generate results.
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Fig. 3. Haplotypes estimation time using MACH

TABLE VII. EXECUTION TIME FOR RUNNING ALL STEPS OF
CHROMOSOME 22 ON A WORKSTATION

Step Tool Execution Time (Hrs.)
Data Conversion Simple shell

scripts
48.88

Haplotypes Estimation MACH 58.44
Perform Imputation Minimac 0.21

Some processes’ outputs can be some inputs of any process
into many downstream processes in the workflow [19]. In this
section, we present our proposed efficient process for genotype
imputation and it’s performance measurement on a workstation
and a server.

A. Proposed Efficient Process

We propose a new efficient process for the genotype
imputation based analysis in the flowchart using the NARAC
dataset as a case study shown in Figure 4. The initial step
is format conversion from the raw dataset of NARAC to
compatible formats for haplotypes estimation. We simply use
shell scripts for raw format conversion and select the PLINK
PED/MAP file format for the output. The second step is data
quality control using PLINK. It returns outputs in the PLINK
BED/BIM/FAM file format. The preprocessed data quality
control is piped to estimate haplotypes using SHAPEIT which
returns outputs in the IMPUTE file formats such as HAPS
and SAMPLE. The final step is imputation analysis using
Minimac3, but it does not support the previously file formats.
Minimac3 supports only the VCF format. Therefore, we have
to convert the outputs of phased haplotypes into the VCF
format which achieved by SHAPEIT itself after the haplotypes
estimation step. In data QC steps, we configure parameter
using basic usage recommended by PLINK within 0.05 for the
MAF threshold. We validate the proposed process by testing
with a large dataset on the 4-cores single 3.0 GHz CPU, 8 GB
RAM, Linux workstation and a server described in the next
section.

B. Performance Measurement on a standard workstation

Figure 5 shows haplotypes estimation comparison between
MACH and SHAPEIT on the Linux workstation by varying
the number of individuals. We configure the number of CPUs
to four according to the number of CPU cores and 400
states of haplotypes are used. SHAPEIT dramatically saves
more running times than MACH, from many hours to <10
minutes. Then, we perform imputation step of 100 samples
with the Phase 1 Version 3 of Chromosome 22 from the
1000 Genomes reference panel. The reference panel consists of

Fig. 4. The proposed workflow of genotype imputation

Fig. 5. Haplotypes estimation comparison between MACH and SHAPEIT
on a workstation

365,644 markers and 2,184 haplotypes. The result were slightly
different. The single Minimac3 took 8 hours and 9 minutes,
whereas it took 8 hours and 40 minutes using the number of
four CPU-cores parameter.

C. Performance Measurement on a server

The testing server has 32 Intel Xeon 2.3 GHz CPU,
total memory of 132 GB, and PBS job scheduler. Table VIII
shows execution time for all steps in applying the NARAC-
Chromosome 22 genotype imputation on the server. We per-
form the phasing step for all individuals (2,062) for four times
using 400 states and 35 MCMC iterations configuration using
SHAPEIT and 32 CPUs parameter. It took almost one hour.
In the next step, we converted outputs’ format of SHAPEIT
(haps, sample) into the VCF format of Minimac3’s input within
SHAPEIT itself. The execution time was 11 seconds. The last
step was the imputation analysis step using Minimac3 with
the same configuration. The reference panel is Chromosome
22 Phase 3 Version 5; there are 652,195 markers and 5,008
haplotypes. The NARAC-Chromosome 22 has 47 markers and
4,124 haplotypes. The imputation time was 39.25 hours and
all steps was 72.25 hours.

Figure 6 shows execution times used only the genotype
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TABLE VIII. THE ALL STEPS EXECUTION TIME FOR GENOTYPE
IMPUTATION OF CHROMOSOME 22 ON THE 32-CPUS SERVER

Step Execution
Time(Hrs.)

1. Extract raw data (Shell scripts) <1 min
2. Convert to PLINK format (Shell scripts) 32
3. Data QC (PLINK) <1 min
4. Estimate haplotypes (SHAPEIT, 32 CPUs) 1
5. Convert to VCF format (SHAPEIT) <1 min
6. Perform imputation (Minimac3, 32 CPUs) 39.25

Fig. 6. Genotype imputation execution time for Chromosome 22 on the
24-CPUs server and 200-states of haplotypes estimation

imputation steps (Step 3 to Step 6 in Figure 4) by varying the
number of individuals of Chromosome 22. We configured pa-
rameter configuration for 200 states, 24 CPUs and 35 MCMC
iterations on the server. It took 18 hours for all individuals and
the execution times of the genotype imputation were slightly
different.

D. Performance Comparison

We also conducted another test case by varying the number
of states on both the server and workstation but fixed the
number of MCMC iterations to 35 and states to 400. In the
server, we configured using 32 CPUs parameter whereas there
were four CPUs on the workstation. Figure 7 depicts execution
time comparison for only the genotype imputation steps (Step
3 to Step 6 in Figure 4). It is quite different amongst the
number of states than the number of individuals. It took about
41 hours to complete the analysis of Chromosome 22 and it
would take about one month for all chromosomes with the
large reference panel on the 32-CPUs server. We identify
the execution times of haplotypes estimation by SHAPEIT
as shown in Figure 8. The execution time was about one
hour for the 400-states estimation. In addition, we classify
execution times of parameter estimation and imputation steps
by Minimac3 running on the server as shown in Figure 9. The
execution time of the parameter estimation steps was about
one day for the 400-states analysis whereas the execution time
of the imputation steps was about three hours. The parameter
estimation steps are more computational intensive than the
imputation steps.

VI. DISCUSSION

Our bioinformatician has phased and imputed a dataset at
the RIKEN research laboratory in Japan with a reference panel
using manual distribution and execution using shell scripts

Fig. 7. Genotype imputation execution time comparison for Chromosome 22
on the 32-CPUs server

Fig. 8. The execution time of haplotypes estimation by SHAPEIT on the
32-CPUs server

Fig. 9. Execution times of parameter estimation and imputation using
Minimac3 on the 32-CPUs server

on a large cluster. The cluster has 80K nodes, each node is
installed SPARC64 XIfx 1.975 GHz, 32 cores, and 32 GB
RAM [20]. The bioinformatician has managed two tracks of
genotype imputation consisting of the phasing and imputing
step using MACH, the phasing step using MACH, and then
the imputation step using Minimac. It took a month to do so.
Both tracks do not require data format conversion for their data
flows. As we described in the previous section, Minimac and
Minimac3 are different. Minimac is the previous version that
supports MACH outputs for performing imputation. Minimac3
is the latest version and supports only the VCF format which
is a standard format of reference panels provided by the 1000
Genomes project.

In this work, we propose a new efficient process that per-
forms haplotypes estimation using the SHAPEIT-based method
and phased-haplotypes imputation using the Minimac3-based
method. Even though the formats of data flows between
haplotypes estimation and imputation analysis are different, the
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format conversion in our proposed process is not computational
intensive. It takes less than one minute. We classify that the
Minimac3-parameter estimation step is the most computa-
tional intensive amongst the relevant steps, followed by the
SHAPEIT-haplotypes estimation and the Minimac3-imputation
step respectively. It may take about one month for analyzing
all chromosomes using our proposed process. From our perfor-
mance comparison experiments, we are confident that it can be
faster for automatic process or workflow orientation if utilizing
a proper parallelized running paradigm.

In GWAS, there usually are a large number of samples
(>200). Our testing dataset also is some sort of GWAS
samples. It has 2,062 samples and 545,080 markers. In our
performance measurement on the Linux workstation and the
server, we configured the states-parameter up to 500 which
means conditioning haplotypes were used in the estimations.
The recommended number of states used in the MCMC is
closely related to the individuals being estimated and signifi-
cantly influences intensive computation. However, the number
of 400 states is widely used and acceptable. Another important
factor influences the performance is the size of reference pan-
els [2]. For example, the haplotypes estimation and imputation
for Chromosome 22 consume about 41 hours running time
with the 5,008 haplotypes reference panel by SHAPEIT and
Minimac3 respectively. There are freely access of available
reference panel providers such as the 1000 Genomes project
and HapMap project [21].

VII. CONCLUSIONS

We propose the practical and efficient process for enhanc-
ing genotype imputation based analysis on SNPs using HPC.
We split the analysis into three main steps consisting of the
data quality control using PLINK, haplotypes estimation using
SHAPEIT, and imputation using Minimac3 for speeding up the
SNPs analysis process. Our practical process is a novel idea
that no anyone has ever proposed before. We present the result
of performance measurement of the NARAC-Chromosome 22
with the large reference panels on the 4-cores single CPU
standard Linux workstation and the 32-CPUs server. The
proposed process runs all steps successfully and returns the
outputs for further gene expression analysis. The execution
time is acceptable without any related tool improvement.

This paper proposes a new practical process that will be
beneficial to bioinformaticians at the beginner or intermediate
level. We are on progress for enhancing genotype imputation
based analysis tools to support parallelization running on a
large cluster.
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